Advertisements
Advertisements
Question
The value of Kc for the reaction 3O2 (g) ↔ 2O3 (g) is 2.0 ×10–50 at 25°C. If the equilibrium concentration of O2 in the air at 25°C is 1.6 ×10–2, what is the concentration of O3?
Solution
The given reaction is:
\[\ce{3O_{2(g)} ↔ 2O_{3(g)}}\]
Then `"K"_"C" = (["O"_(3("g"))]^2)/["O"_(2("g"))]^3`
It is given that `"K"_"C" = 2.0 xx 10^(-30) and ["O"_(2("g")]] = 1.6 xx 10^(-2)`
Then, we have,
`2.0 xx 10^(-50) = ["O"_(3("g")]]^2/[1.6 xx 10^(-2)]^3`
`=> ["O"_(3("g"))]^2 = 2.0 xx 10^(-50) xx (1.6 xx 10^(-2))^3`
`=> ["O"_(3("g"))]^2 = 8.192 xx 10^(-56)`
`=>["O"_(3("g"))] = 2.86 xx 10^(-28) "M"`
Hence, the concentration of `"O"_3 " is " 2.86 xx 10^(-28)` M
APPEARS IN
RELATED QUESTIONS
What is Kc for the following equilibrium when the equilibrium concentration of each substance is: [SO2] = 0.60 M, [O2] = 0.82 M and [SO3] = 1.90 M?
\[\ce{2SO2(g) + O2(g) ⇌ 2SO3(g)}\]
Write the expression for the equilibrium constant, Kc for each of the following reactions:
\[\ce{2NOCl (g) ⇌ 2NO (g) + Cl2 (g)}\]
Write the expression for the equilibrium constant, Kc for the following reactions:
\[\ce{2Cu(NO3)2 (s) ⇌ 2CuO (s) + 4NO2 (g) + O2 (g)}\]
Write the expression for the equilibrium constant, Kc for the following reactions:
\[\ce{CH3COOC2H5(aq) + H2O(l) ⇌CH3COOH (aq) + C2H5OH (aq)}\]
Write the expression for the equilibrium constant, Kc for following reactions:
\[\ce{Fe^{3+}(aq) + 3OH^-(aq) ⇌ Fe(OH)3(s)}\]
A reaction between N2 and O2 takes place as follows:
\[\ce{2N2 (g) + O2 (g) ⇌ 2N2O (g)}\]
If a mixture of 0.482 mol of N2 and 0.933 mol of O2 is placed in a 10 L reaction vessel and allowed to form N2O at a temperature for which Kc = 2.0 × 10-37, determine the composition of equilibrium mixture.
One mole of H2O and one mole of CO are taken in 10 L vessel and heated to 725 K. At equilibrium, 40% of water (by mass) reacts with CO according to the equation,
\[\ce{H2O (g) + CO (g) ⇌ H2 (g) + CO2 (g)}\]
Calculate the equilibrium constant for the reaction.
At 700 K, the equilibrium constant for the reaction
\[\ce{H_{2(g)} + I_{2(g)} ↔ 2HI_{(g)}}\]
is 54.8. If 0.5 molL–1 of HI(g) is present at equilibrium at 700 K, what are the concentration of H2(g) and I2(g) assuming that we initially started with HI(g) and allowed it to reach equilibrium at 700 K?
Kp = 0.04 atm at 899 K for the equilibrium shown below. What is the equilibrium concentration of C2H6 when it is placed in a flask at 4.0 atm pressure and allowed to come to equilibrium?
\[\ce{C2H6 (g) ⇌ C2H4 (g) + H2 (g)}\]
Does the number of moles of reaction products increase, decrease or remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?
\[\ce{3Fe (s) + 4H2O (g) ⇌ Fe3O4 (s) + 4H2 (g)}\]
For the reaction \[\ce{H2 (g) + I2 (g) ⇌ 2HI (g)}\], the standard free energy is ∆GΘ > 0. The equilibrium constant (K ) would be ______.
On increasing the pressure, in which direction will the gas phase reaction proceed to re-establish equilibrium, is predicted by applying the Le Chatelier’s principle. Consider the reaction.
\[\ce{N2 (g) + 3H2 (g) ⇌ 2NH3 (g)}\]
Which of the following is correct, if the total pressure at which the equilibrium is established, is increased without changing the temperature?
Match standard free energy of the reaction with the corresponding equilibrium constant.
Column I | Column II |
(i) ∆GΘ > 0 | (a) K > 1 |
(ii) ∆GΘ > 0 | (b) K = 1 |
(iii) ∆GΘ = 0 | (c) K = 0 |
(d) K < 1 |
For the reaction,
\[\ce{N2 + O2(g) ⇌ 2NO(g)}\]
the equilibrium constant is K1. The equilibrium constant is K2 for the reaction
\[\ce{2NO(g) + O2(g) ⇌ 2NO2(g)}\]
What is "K" for the reaction:
\[\ce{NO2(g) ⇌ 1/2 N2(g) + O2(g)}\]?
The stepwise formation of [Cu(NH3)4]2+ is given below:
\[\ce{Cu^{2+} + NH3 <=>[K1] [Cu(NH3)]^{2+}}\]
\[\ce{[Cu(NH3)]^{2+} + NH3 <=>[K2] [Cu(NH3)2]^{2+}}\]
\[\ce{[Cu(NH3)2]^{2+} + NH3 <=>[K3] [Cu(NH3)3]^{2+}}\]
\[\ce{[Cu(NH3)3]^{2+} + NH3 <=>[K4] [Cu(NH3)4]^{2+}}\]
The value of stability constants K1, K2, K3 and K4 are 104, 1.58 × 102, 5 × 103 and 102 respectively. The overall equilibrium constant for dissociation of [Cu(NH3)4]2+ is x × 10−12. The value of x is ______. (Rounded-off to the nearest integer)
For which of the following Kp is less than Kc?
The equilibrium constant for the reaction is ______ × 1026.
\[\ce{Fe + CuSO4 <=> FeSO4 + Cu}\] at 25°C.
Given `"E"_("Fe"//"Fe"^(2+))^0` = 0.44 V
`"E"_("Cu"//"Cu"^(2+))^0` = - 0.337 V
The decomposition of N2O4 to NO2 was carried out in chloroform at 280°C. At equilibrium, 0.2 mol of N2O4 and 2 × 10−3 mol of NO2 were present in 2 ℓ of the solution. The equilibrium constant for the reaction \[\ce{N2O4 <=> 2NO2}\] is ______.
In which one of the following equilibria, KP ≠ Kc?