English
Karnataka Board PUCPUC Science Class 11

Write the expression for the equilibrium constant, Kc for following reactions: FeX3+(aq)+3OHX−(aq)↽−−⇀Fe(OH)X3(s) - Chemistry

Advertisements
Advertisements

Question

Write the expression for the equilibrium constant, Kc for following reactions:

\[\ce{Fe^{3+}(aq) + 3OH^-(aq) ⇌ Fe(OH)3(s)}\]

Numerical

Solution

`"K"_"c" = ["Fe"("OH")_(3("s"))]/(["Fe"^(3+)(aq)]["OH"^(-)("aq")]^3) = 1/(["Fe"^(3+) ("aq")]["OH"^(-)("aq")]^3)`

shaalaa.com
Law of Chemical Equilibrium and Equilibrium Constant
  Is there an error in this question or solution?
Chapter 7: Equilibrium - EXERCISES [Page 232]

APPEARS IN

NCERT Chemistry - Part 1 and 2 [English] Class 11
Chapter 7 Equilibrium
EXERCISES | Q 7.4 - (iv) | Page 232

RELATED QUESTIONS

Write the expression for the equilibrium constant, Kc for each of the following reactions:

\[\ce{2NOCl (g) ⇌ 2NO (g) + Cl2 (g)}\]


Write the expression for the equilibrium constant, Kc for the following reactions:

\[\ce{2Cu(NO3)2 (s) ⇌ 2CuO (s) + 4NO2 (g) + O2 (g)}\]


Write the expression for the equilibrium constant, Kc for the following reactions:

\[\ce{CH3COOC2H5(aq) + H2O(l) ⇌CH3COOH (aq) + C2H5OH (aq)}\]


One mole of H2O and one mole of CO are taken in 10 L vessel and heated to 725 K. At equilibrium, 40% of water (by mass) reacts with CO according to the equation, 

\[\ce{H2O (g) + CO (g) ⇌ H2 (g) + CO2 (g)}\] 

Calculate the equilibrium constant for the reaction.


At 700 K, the equilibrium constant for the reaction

\[\ce{H_{2(g)} + I_{2(g)} ↔ 2HI_{(g)}}\] 

is 54.8. If 0.5 molL–1 of HI(g) is present at equilibrium at 700 K, what are the concentration of H2(g) and I2(g) assuming that we initially started with HI(g) and allowed it to reach equilibrium at 700 K?


Kp = 0.04 atm at 899 K for the equilibrium shown below. What is the equilibrium concentration of C2H6 when it is placed in a flask at 4.0 atm pressure and allowed to come to equilibrium?

\[\ce{C2H6 (g) ⇌ C2H4 (g) + H2 (g)}\]


Calculate a) ΔG°and b) the equilibrium constant for the formation of NO2 from NO and O2 at 298 K

\[\ce{NO(g) + 1/2 O_2 (g) <=> NO_2(g)}\]

where ΔfG (NO2) = 52.0 kJ/mol

ΔfG (NO) = 87.0 kJ/mol

ΔfG (O2) = 0 kJ/mol


Does the number of moles of reaction products increase, decrease or remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?

\[\ce{3Fe (s) + 4H2O (g) ⇌ Fe3O4 (s) + 4H2 (g)}\]


Predict which of the following reaction will have the appreciable concentration of reactants and products:

  1. \[\ce{Cl2 (g) ⇌ 2Cl (g)}\] Kc = 5 ×10–39
  2. \[\ce{Cl2 (g) + 2NO (g) ⇌ 2NOCl (g)}\] Kc = 3.7 × 108
  3. \[\ce{Cl2 (g) + 2NO2 (g) ⇌ 2NO2Cl (g)}\] Kc = 1.8

On increasing the pressure, in which direction will the gas phase reaction proceed to re-establish equilibrium, is predicted by applying the Le Chatelier’s principle. Consider the reaction.

\[\ce{N2 (g) + 3H2 (g) ⇌ 2NH3 (g)}\]

Which of the following is correct, if the total pressure at which the equilibrium is established, is increased without changing the temperature?


At 500 K, equilibrium constant, \[\ce{K_c}\], for the following reaction is 5.

\[\ce{1/2 H2 (g) + 1/2 I2 (g) ⇌ HI (g)}\]

What would be the equilibrium constant \[\ce{K_c}\] for the reaction

\[\ce{2HI (g) ⇌ H2 (g) + I2 (g)}\]


Match standard free energy of the reaction with the corresponding equilibrium constant.

Column I Column II
(i) ∆GΘ > 0 (a) K > 1
(ii) ∆GΘ > 0  (b) K = 1
(iii) ∆GΘ = 0 (c) K = 0
  (d) K < 1

The stepwise formation of [Cu(NH3)4]2+ is given below:

\[\ce{Cu^{2+} + NH3 <=>[K1] [Cu(NH3)]^{2+}}\]

\[\ce{[Cu(NH3)]^{2+} + NH3 <=>[K2] [Cu(NH3)2]^{2+}}\]

\[\ce{[Cu(NH3)2]^{2+} + NH3 <=>[K3] [Cu(NH3)3]^{2+}}\]

\[\ce{[Cu(NH3)3]^{2+} + NH3 <=>[K4] [Cu(NH3)4]^{2+}}\]

The value of stability constants K1, K2, K3 and K4 are 104, 1.58 × 102, 5 × 103 and 102 respectively. The overall equilibrium constant for dissociation of [Cu(NH3)4]2+ is x × 10−12. The value of x is ______. (Rounded-off to the nearest integer)


At 1990 K and 1 atm pressure, there are equal numbers of Cl2 molecules and Cl atoms in the reaction mixture. The value of Kp for the reaction Cl2(g) ⇌ 2Cl(g) under the above conditions is x × 10−1. The value of x is ______. (Rounded-off to the nearest integer)


For which of the following Kp is less than Kc?


The equilibrium constant for the reaction is ______ × 1026.

\[\ce{Fe + CuSO4 <=> FeSO4 + Cu}\] at 25°C.

Given `"E"_("Fe"//"Fe"^(2+))^0` = 0.44 V

`"E"_("Cu"//"Cu"^(2+))^0` = - 0.337 V


The value of Kc is 64 at 800 K for the reaction \[\ce{N2(g) + 3H2(g) <=> 2NH3(g)}\].

The value of Kc for the following reaction is:

\[\ce{NH3(g) <=> 1/2N2(g) + 3/2H2(g)}\]


In which one of the following equilibria, KP ≠ Kc?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×