Advertisements
Advertisements
प्रश्न
Write the expression for the equilibrium constant, Kc for following reactions:
\[\ce{Fe^{3+}(aq) + 3OH^-(aq) ⇌ Fe(OH)3(s)}\]
उत्तर
`"K"_"c" = ["Fe"("OH")_(3("s"))]/(["Fe"^(3+)(aq)]["OH"^(-)("aq")]^3) = 1/(["Fe"^(3+) ("aq")]["OH"^(-)("aq")]^3)`
APPEARS IN
संबंधित प्रश्न
Write the expression for the equilibrium constant, Kc for each of the following reactions:
\[\ce{2NOCl (g) ⇌ 2NO (g) + Cl2 (g)}\]
Write the expression for the equilibrium constant, Kc for the following reactions:
\[\ce{CH3COOC2H5(aq) + H2O(l) ⇌CH3COOH (aq) + C2H5OH (aq)}\]
A reaction between N2 and O2 takes place as follows:
\[\ce{2N2 (g) + O2 (g) ⇌ 2N2O (g)}\]
If a mixture of 0.482 mol of N2 and 0.933 mol of O2 is placed in a 10 L reaction vessel and allowed to form N2O at a temperature for which Kc = 2.0 × 10-37, determine the composition of equilibrium mixture.
Nitric oxide reacts with Br2 and gives nitrosyl bromide as per reaction given below:
\[\ce{2NO(g) + Br2 (g) ⇌ 2NOBr (g)}\]
When 0.087 mol of NO and 0.0437 mol of Br2 are mixed in a closed container at the constant temperature, 0.0518 mol of NOBr is obtained at equilibrium. Calculate the equilibrium amount of NO and Br2.
Does the number of moles of reaction products increase, decrease or remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?
\[\ce{3Fe (s) + 4H2O (g) ⇌ Fe3O4 (s) + 4H2 (g)}\]
Predict which of the following reaction will have the appreciable concentration of reactants and products:
- \[\ce{Cl2 (g) ⇌ 2Cl (g)}\] Kc = 5 ×10–39
- \[\ce{Cl2 (g) + 2NO (g) ⇌ 2NOCl (g)}\] Kc = 3.7 × 108
- \[\ce{Cl2 (g) + 2NO2 (g) ⇌ 2NO2Cl (g)}\] Kc = 1.8
The reaction, \[\ce{CO(g) + 3H2(g) ↔ CH4(g) + H2O(g)}\] is at equilibrium at 1300 K in a 1L flask. It also contains 0.30 mol of CO, 0.10 mol of H2 and 0.02 mol of H2O and an unknown amount of CH4 in the flask. Determine the concentration of CH4 in the mixture. The equilibrium constant, Kc for the reaction at the given temperature is 3.90.
On increasing the pressure, in which direction will the gas phase reaction proceed to re-establish equilibrium, is predicted by applying the Le Chatelier’s principle. Consider the reaction.
\[\ce{N2 (g) + 3H2 (g) ⇌ 2NH3 (g)}\]
Which of the following is correct, if the total pressure at which the equilibrium is established, is increased without changing the temperature?
At 500 K, equilibrium constant, \[\ce{K_c}\], for the following reaction is 5.
\[\ce{1/2 H2 (g) + 1/2 I2 (g) ⇌ HI (g)}\]
What would be the equilibrium constant \[\ce{K_c}\] for the reaction
\[\ce{2HI (g) ⇌ H2 (g) + I2 (g)}\]
Match standard free energy of the reaction with the corresponding equilibrium constant.
Column I | Column II |
(i) ∆GΘ > 0 | (a) K > 1 |
(ii) ∆GΘ > 0 | (b) K = 1 |
(iii) ∆GΘ = 0 | (c) K = 0 |
(d) K < 1 |
The stepwise formation of [Cu(NH3)4]2+ is given below:
\[\ce{Cu^{2+} + NH3 <=>[K1] [Cu(NH3)]^{2+}}\]
\[\ce{[Cu(NH3)]^{2+} + NH3 <=>[K2] [Cu(NH3)2]^{2+}}\]
\[\ce{[Cu(NH3)2]^{2+} + NH3 <=>[K3] [Cu(NH3)3]^{2+}}\]
\[\ce{[Cu(NH3)3]^{2+} + NH3 <=>[K4] [Cu(NH3)4]^{2+}}\]
The value of stability constants K1, K2, K3 and K4 are 104, 1.58 × 102, 5 × 103 and 102 respectively. The overall equilibrium constant for dissociation of [Cu(NH3)4]2+ is x × 10−12. The value of x is ______. (Rounded-off to the nearest integer)
At 1990 K and 1 atm pressure, there are equal numbers of Cl2 molecules and Cl atoms in the reaction mixture. The value of Kp for the reaction Cl2(g) ⇌ 2Cl(g) under the above conditions is x × 10−1. The value of x is ______. (Rounded-off to the nearest integer)
An equilibrium system for the reaction between hydrogen and iodine to give hydrogen iodide at 765 K in a 5 litre volume contains 0.4 mole of hydrogen, 0.4 mole of iodine and 2.4 moles of hydrogen iodide.
\[\ce{H2 + I2 <=> 2HI}\]
The equilibrium constant for the reaction is:
Sulphide ion in alkaline solution reacts with solid sulphur to form polysulphide ions having formula, \[\ce{S^{2-}2}\], \[\ce{S^{2-}3}\], \[\ce{S^{2-}4}\], etc. if K1 = 12 for \[\ce{S + S^{2-} <=> S^{2-}2}\] and K2 = 132 for \[\ce{2S + S^{2-} <=> S^{2-}3}\], K3 = ______ for \[\ce{S + S^{2-}2 <=> S^{2-}3}\].
For which of the following Kp is less than Kc?
The equilibrium constant for the reaction is ______ × 1026.
\[\ce{Fe + CuSO4 <=> FeSO4 + Cu}\] at 25°C.
Given `"E"_("Fe"//"Fe"^(2+))^0` = 0.44 V
`"E"_("Cu"//"Cu"^(2+))^0` = - 0.337 V