Advertisements
Advertisements
प्रश्न
Nitric oxide reacts with Br2 and gives nitrosyl bromide as per reaction given below:
\[\ce{2NO(g) + Br2 (g) ⇌ 2NOBr (g)}\]
When 0.087 mol of NO and 0.0437 mol of Br2 are mixed in a closed container at the constant temperature, 0.0518 mol of NOBr is obtained at equilibrium. Calculate the equilibrium amount of NO and Br2.
उत्तर
The given reaction is:
\[\ce{\underset{\text{2 mol}}{2NO_{(g)}} + \underset{1 mol}{Br_{2(g)}} ⇌ \underset{2 mol}{2NOBr_{(g)}}}\]
Now, 2 mol of NOBr are formed from 2 mol of NO. Therefore, 0.0518 mol of NOBr are formed from 0.0518 mol of NO.
Again, 2 mol of NOBr are formed from 1 mol of Br.
Therefore, 0.0518 mol of NOBr are formed from `0.0518/2` mol of Br, or
0.0259 mol of NO.
The amount of NO and Br present initially is as follows:
[NO] = 0.087 mol [Br2] = 0.0437 mol
Therefore, the amount of NO present at equilibrium is:
[NO] = 0.087 - 0.0518
= 0.0352 mol
And, the amount of Br present at equilibrium is:
[Br2] = 0.0437 – 0.0259
= 0.0178 mol
APPEARS IN
संबंधित प्रश्न
Write the expression for the equilibrium constant, Kc for each of the following reactions:
\[\ce{2NOCl (g) ⇌ 2NO (g) + Cl2 (g)}\]
Write the expression for the equilibrium constant, Kc for following reactions:
\[\ce{Fe^{3+}(aq) + 3OH^-(aq) ⇌ Fe(OH)3(s)}\]
Write the expression for the equilibrium constant, Kc for the following reactions
\[\ce{I2 (s) + 5F2 ⇌ 2IF5}\]
One mole of H2O and one mole of CO are taken in 10 L vessel and heated to 725 K. At equilibrium, 40% of water (by mass) reacts with CO according to the equation,
\[\ce{H2O (g) + CO (g) ⇌ H2 (g) + CO2 (g)}\]
Calculate the equilibrium constant for the reaction.
Calculate a) ΔG°and b) the equilibrium constant for the formation of NO2 from NO and O2 at 298 K
\[\ce{NO(g) + 1/2 O_2 (g) <=> NO_2(g)}\]
where ΔfG⊝ (NO2) = 52.0 kJ/mol
ΔfG⊝ (NO) = 87.0 kJ/mol
ΔfG⊝ (O2) = 0 kJ/mol
Does the number of moles of reaction products increase, decrease or remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?
\[\ce{3Fe (s) + 4H2O (g) ⇌ Fe3O4 (s) + 4H2 (g)}\]
On increasing the pressure, in which direction will the gas phase reaction proceed to re-establish equilibrium, is predicted by applying the Le Chatelier’s principle. Consider the reaction.
\[\ce{N2 (g) + 3H2 (g) ⇌ 2NH3 (g)}\]
Which of the following is correct, if the total pressure at which the equilibrium is established, is increased without changing the temperature?
At 500 K, equilibrium constant, \[\ce{K_c}\], for the following reaction is 5.
\[\ce{1/2 H2 (g) + 1/2 I2 (g) ⇌ HI (g)}\]
What would be the equilibrium constant \[\ce{K_c}\] for the reaction
\[\ce{2HI (g) ⇌ H2 (g) + I2 (g)}\]
For the reaction,
\[\ce{N2 + O2(g) ⇌ 2NO(g)}\]
the equilibrium constant is K1. The equilibrium constant is K2 for the reaction
\[\ce{2NO(g) + O2(g) ⇌ 2NO2(g)}\]
What is "K" for the reaction:
\[\ce{NO2(g) ⇌ 1/2 N2(g) + O2(g)}\]?
At 1990 K and 1 atm pressure, there are equal numbers of Cl2 molecules and Cl atoms in the reaction mixture. The value of Kp for the reaction Cl2(g) ⇌ 2Cl(g) under the above conditions is x × 10−1. The value of x is ______. (Rounded-off to the nearest integer)
For the reaction \[\ce{A(g) <=> B(g)}\] at 495 K, ΔG° = −9.478 kJ mol−1
If we start the reaction in a closed container at 495 K with 22 millimoles of A, the amount of B in the equilibrium mixture is ______ millimoles. (Round off to the Nearest Integer).
[R = 8.314 J mol−1 K−1; ln 10 = 2.303]
Sulphide ion in alkaline solution reacts with solid sulphur to form polysulphide ions having formula, \[\ce{S^{2-}2}\], \[\ce{S^{2-}3}\], \[\ce{S^{2-}4}\], etc. if K1 = 12 for \[\ce{S + S^{2-} <=> S^{2-}2}\] and K2 = 132 for \[\ce{2S + S^{2-} <=> S^{2-}3}\], K3 = ______ for \[\ce{S + S^{2-}2 <=> S^{2-}3}\].
The equilibrium constant for the reaction is ______ × 1026.
\[\ce{Fe + CuSO4 <=> FeSO4 + Cu}\] at 25°C.
Given `"E"_("Fe"//"Fe"^(2+))^0` = 0.44 V
`"E"_("Cu"//"Cu"^(2+))^0` = - 0.337 V
The decomposition of N2O4 to NO2 was carried out in chloroform at 280°C. At equilibrium, 0.2 mol of N2O4 and 2 × 10−3 mol of NO2 were present in 2 ℓ of the solution. The equilibrium constant for the reaction \[\ce{N2O4 <=> 2NO2}\] is ______.
A solid XY kept in an evacuated sealed container undergoes decomposition to form a mixture of gases X and Y at temperature T. The equilibrium pressure is 10 bar in the vessel. Kp for this reaction is ______.