Advertisements
Advertisements
प्रश्न
Calculate a) ΔG°and b) the equilibrium constant for the formation of NO2 from NO and O2 at 298 K
\[\ce{NO(g) + 1/2 O_2 (g) <=> NO_2(g)}\]
where ΔfG⊝ (NO2) = 52.0 kJ/mol
ΔfG⊝ (NO) = 87.0 kJ/mol
ΔfG⊝ (O2) = 0 kJ/mol
उत्तर
a) For the given reaction,
ΔG⊝ = ΔG⊝ ( Products) – ΔG°( Reactants)
ΔG⊝ = 52.0 – {87.0 + 0}
= - 35.0 kJ mol–1
b) We know that,
ΔG⊝ = RT log Kc
ΔG⊝ = 2.303 RT log Kc
`"K"_"c" = (-35.5xx10^(-3))/(-2.303xx8.314xx298)`
= 6.134
`therefore "K"_"c" = "antilog" (6.134)`
`= 1.36 xx 10^6`
Hence, the equilibrium constant for the given reaction Kc is 1.36 × 106
APPEARS IN
संबंधित प्रश्न
What is Kc for the following equilibrium when the equilibrium concentration of each substance is: [SO2] = 0.60 M, [O2] = 0.82 M and [SO3] = 1.90 M?
\[\ce{2SO2(g) + O2(g) ⇌ 2SO3(g)}\]
Write the expression for the equilibrium constant, Kc for the following reactions:
\[\ce{2Cu(NO3)2 (s) ⇌ 2CuO (s) + 4NO2 (g) + O2 (g)}\]
Write the expression for the equilibrium constant, Kc for the following reactions:
\[\ce{CH3COOC2H5(aq) + H2O(l) ⇌CH3COOH (aq) + C2H5OH (aq)}\]
Write the expression for the equilibrium constant, Kc for the following reactions
\[\ce{I2 (s) + 5F2 ⇌ 2IF5}\]
One mole of H2O and one mole of CO are taken in 10 L vessel and heated to 725 K. At equilibrium, 40% of water (by mass) reacts with CO according to the equation,
\[\ce{H2O (g) + CO (g) ⇌ H2 (g) + CO2 (g)}\]
Calculate the equilibrium constant for the reaction.
What is the equilibrium concentration of each of the substances in the equilibrium when the initial concentration of ICl was 0.78 M?
\[\ce{2 ICl(g) ⇌ I2(g) + Cl2(g)}\]; KC = 0.14
Predict which of the following reaction will have the appreciable concentration of reactants and products:
- \[\ce{Cl2 (g) ⇌ 2Cl (g)}\] Kc = 5 ×10–39
- \[\ce{Cl2 (g) + 2NO (g) ⇌ 2NOCl (g)}\] Kc = 3.7 × 108
- \[\ce{Cl2 (g) + 2NO2 (g) ⇌ 2NO2Cl (g)}\] Kc = 1.8
The value of Kc for the reaction 3O2 (g) ↔ 2O3 (g) is 2.0 ×10–50 at 25°C. If the equilibrium concentration of O2 in the air at 25°C is 1.6 ×10–2, what is the concentration of O3?
The reaction, \[\ce{CO(g) + 3H2(g) ↔ CH4(g) + H2O(g)}\] is at equilibrium at 1300 K in a 1L flask. It also contains 0.30 mol of CO, 0.10 mol of H2 and 0.02 mol of H2O and an unknown amount of CH4 in the flask. Determine the concentration of CH4 in the mixture. The equilibrium constant, Kc for the reaction at the given temperature is 3.90.
On increasing the pressure, in which direction will the gas phase reaction proceed to re-establish equilibrium, is predicted by applying the Le Chatelier’s principle. Consider the reaction.
\[\ce{N2 (g) + 3H2 (g) ⇌ 2NH3 (g)}\]
Which of the following is correct, if the total pressure at which the equilibrium is established, is increased without changing the temperature?
For the reaction,
\[\ce{N2 + O2(g) ⇌ 2NO(g)}\]
the equilibrium constant is K1. The equilibrium constant is K2 for the reaction
\[\ce{2NO(g) + O2(g) ⇌ 2NO2(g)}\]
What is "K" for the reaction:
\[\ce{NO2(g) ⇌ 1/2 N2(g) + O2(g)}\]?
At 1990 K and 1 atm pressure, there are equal numbers of Cl2 molecules and Cl atoms in the reaction mixture. The value of Kp for the reaction Cl2(g) ⇌ 2Cl(g) under the above conditions is x × 10−1. The value of x is ______. (Rounded-off to the nearest integer)
For the reaction \[\ce{A(g) <=> B(g)}\] at 495 K, ΔG° = −9.478 kJ mol−1
If we start the reaction in a closed container at 495 K with 22 millimoles of A, the amount of B in the equilibrium mixture is ______ millimoles. (Round off to the Nearest Integer).
[R = 8.314 J mol−1 K−1; ln 10 = 2.303]
An equilibrium system for the reaction between hydrogen and iodine to give hydrogen iodide at 765 K in a 5 litre volume contains 0.4 mole of hydrogen, 0.4 mole of iodine and 2.4 moles of hydrogen iodide.
\[\ce{H2 + I2 <=> 2HI}\]
The equilibrium constant for the reaction is:
Sulphide ion in alkaline solution reacts with solid sulphur to form polysulphide ions having formula, \[\ce{S^{2-}2}\], \[\ce{S^{2-}3}\], \[\ce{S^{2-}4}\], etc. if K1 = 12 for \[\ce{S + S^{2-} <=> S^{2-}2}\] and K2 = 132 for \[\ce{2S + S^{2-} <=> S^{2-}3}\], K3 = ______ for \[\ce{S + S^{2-}2 <=> S^{2-}3}\].
The value of Kc is 64 at 800 K for the reaction \[\ce{N2(g) + 3H2(g) <=> 2NH3(g)}\].
The value of Kc for the following reaction is:
\[\ce{NH3(g) <=> 1/2N2(g) + 3/2H2(g)}\]
In which one of the following equilibria, KP ≠ Kc?