मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

One mole of H2O and one mole of CO are taken in 10 L vessel and heated to 725 K. At equilibrium, 40% of water (by mass) reacts with CO according to the equation, - Chemistry

Advertisements
Advertisements

प्रश्न

One mole of H2O and one mole of CO are taken in 10 L vessel and heated to 725 K. At equilibrium, 40% of water (by mass) reacts with CO according to the equation, 

\[\ce{H2O (g) + CO (g) ⇌ H2 (g) + CO2 (g)}\] 

Calculate the equilibrium constant for the reaction.

संख्यात्मक

उत्तर

The given reaction is:

  H2O(g) + CO(g) H2(g) CO2(g)
Initial conc. `1/10`M   `1/10`M   0 0
At equilibrium `(1 - 0.4)/10`M   `(1 - 0.4)/10`M   `0.4/10`M `0.4/10`M
  = 0.06 M   = 0.06 M   = 0.04 M = 0.04 M

Therefore, the equilibrium constant for the reaction,

`"K"_"c" = (["H"_2]["CO"_2])/(["H"_2"O"]["CO"])`

`= (0.04 xx 0.04)/(0.06 xx 0.06)`

= 0.444 (approximately)

shaalaa.com
Law of Chemical Equilibrium and Equilibrium Constant
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Equilibrium - EXERCISES [पृष्ठ २३३]

APPEARS IN

एनसीईआरटी Chemistry - Part 1 and 2 [English] Class 11
पाठ 7 Equilibrium
EXERCISES | Q 7.14 | पृष्ठ २३३

संबंधित प्रश्‍न

What is Kc for the following equilibrium when the equilibrium concentration of each substance is: [SO2] = 0.60 M, [O2] = 0.82 M and [SO3] = 1.90 M?

\[\ce{2SO2(g) + O2(g) ⇌ 2SO3(g)}\]


Write the expression for the equilibrium constant, Kc for each of the following reactions:

\[\ce{2NOCl (g) ⇌ 2NO (g) + Cl2 (g)}\]


Write the expression for the equilibrium constant, Kc for following reactions:

\[\ce{Fe^{3+}(aq) + 3OH^-(aq) ⇌ Fe(OH)3(s)}\]


Write the expression for the equilibrium constant, Kc for the following reactions

\[\ce{I2 (s) + 5F2 ⇌ 2IF5}\]


Nitric oxide reacts with Br2 and gives nitrosyl bromide as per reaction given below:

\[\ce{2NO(g) + Br2 (g) ⇌ 2NOBr (g)}\]

When 0.087 mol of NO and 0.0437 mol of Br2 are mixed in a closed container at the constant temperature, 0.0518 mol of NOBr is obtained at equilibrium. Calculate the equilibrium amount of NO and Br2.


What is the equilibrium concentration of each of the substances in the equilibrium when the initial concentration of ICl was 0.78 M?

\[\ce{2 ICl(g) ⇌  I2(g) + Cl2(g)}\]; KC = 0.14


Does the number of moles of reaction products increase, decrease or remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?

\[\ce{3Fe (s) + 4H2O (g) ⇌ Fe3O4 (s) + 4H2 (g)}\]


The value of Kc for the reaction 3O2 (g) ↔ 2O3 (g) is 2.0 ×10–50 at 25°C. If the equilibrium concentration of O2 in the air at 25°C is 1.6 ×10–2, what is the concentration of O3?


The reaction, \[\ce{CO(g) + 3H2(g) ↔ CH4(g) + H2O(g)}\] is at equilibrium at 1300 K in a 1L flask. It also contains 0.30 mol of CO, 0.10 mol of H2 and 0.02 mol of H2O and an unknown amount of CH4 in the flask. Determine the concentration of CH4 in the mixture. The equilibrium constant, Kc for the reaction at the given temperature is 3.90.


For the reaction \[\ce{H2 (g) + I2 (g) ⇌ 2HI (g)}\], the standard free energy is  ∆GΘ > 0. The equilibrium constant (K ) would be ______.


Match standard free energy of the reaction with the corresponding equilibrium constant.

Column I Column II
(i) ∆GΘ > 0 (a) K > 1
(ii) ∆GΘ > 0  (b) K = 1
(iii) ∆GΘ = 0 (c) K = 0
  (d) K < 1

For the reaction,

\[\ce{N2 + O2(g) ⇌ 2NO(g)}\]

the equilibrium constant is K1. The equilibrium constant is K2 for the reaction

\[\ce{2NO(g) + O2(g) ⇌ 2NO2(g)}\]

What is "K" for the reaction:

\[\ce{NO2(g) ⇌ 1/2 N2(g) + O2(g)}\]?


For the reaction \[\ce{A(g) <=> B(g)}\] at 495 K, ΔG° = −9.478 kJ mol−1

If we start the reaction in a closed container at 495 K with 22 millimoles of A, the amount of B in the equilibrium mixture is ______ millimoles. (Round off to the Nearest Integer).

[R = 8.314 J mol−1 K−1; ln 10 = 2.303]


An equilibrium system for the reaction between hydrogen and iodine to give hydrogen iodide at 765 K in a 5 litre volume contains 0.4 mole of hydrogen, 0.4 mole of iodine and 2.4 moles of hydrogen iodide.

\[\ce{H2 + I2 <=> 2HI}\]

The equilibrium constant for the reaction is:


The decomposition of N2O4 to NO2 was carried out in chloroform at 280°C. At equilibrium, 0.2 mol of N2O4 and 2 × 10−3 mol of NO2 were present in 2 ℓ of the solution. The equilibrium constant for the reaction \[\ce{N2O4 <=> 2NO2}\] is ______.


The value of Kc is 64 at 800 K for the reaction \[\ce{N2(g) + 3H2(g) <=> 2NH3(g)}\].

The value of Kc for the following reaction is:

\[\ce{NH3(g) <=> 1/2N2(g) + 3/2H2(g)}\]


In which one of the following equilibria, KP ≠ Kc?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×