Advertisements
Advertisements
प्रश्न
At 700 K, the equilibrium constant for the reaction
\[\ce{H_{2(g)} + I_{2(g)} ↔ 2HI_{(g)}}\]
is 54.8. If 0.5 molL–1 of HI(g) is present at equilibrium at 700 K, what are the concentration of H2(g) and I2(g) assuming that we initially started with HI(g) and allowed it to reach equilibrium at 700 K?
उत्तर
It is given that equilibrium constant `"K"_"C"` for the reaction
\[\ce{H_{2(g)} + I_{2(g)} ↔ 2HI_{(g)}}\] is 54.8.
Therefore, at equilibrium, the equilibrium constant `"K'"_"C"` for the reaction
\[\ce{2HI_{(g)} ↔ H_{2(g)} + I_{2(g)}}\] will be `1/54.8`
[HI] = 0.5 `" mol L"^(-1)`
Let the concentrations of hydrogen and iodine at equilibrium be x mol L–1
`["H"_2] = ["I"_2] = x " mol" " L"^(-1)`
Therefore, `(["H"_2]["I"_2])/["HI"]^2 = "K'"_"C"`
`=> (x xx x)/(0.5)^2 = 1/54.8`
`=> x^2 = 0.25/54.8`
`=> x = 0.06754`
x = 0.068 `" mol L"^(-1)` (approximatley)
Hence, at equilibrium, `["H"_2] = ["I"_2] = 0.068 " mol L"^(-1)`
APPEARS IN
संबंधित प्रश्न
Write the expression for the equilibrium constant, Kc for each of the following reactions:
\[\ce{2NOCl (g) ⇌ 2NO (g) + Cl2 (g)}\]
Write the expression for the equilibrium constant, Kc for following reactions:
\[\ce{Fe^{3+}(aq) + 3OH^-(aq) ⇌ Fe(OH)3(s)}\]
Write the expression for the equilibrium constant, Kc for the following reactions
\[\ce{I2 (s) + 5F2 ⇌ 2IF5}\]
What is the equilibrium concentration of each of the substances in the equilibrium when the initial concentration of ICl was 0.78 M?
\[\ce{2 ICl(g) ⇌ I2(g) + Cl2(g)}\]; KC = 0.14
Kp = 0.04 atm at 899 K for the equilibrium shown below. What is the equilibrium concentration of C2H6 when it is placed in a flask at 4.0 atm pressure and allowed to come to equilibrium?
\[\ce{C2H6 (g) ⇌ C2H4 (g) + H2 (g)}\]
Does the number of moles of reaction products increase, decrease or remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?
\[\ce{3Fe (s) + 4H2O (g) ⇌ Fe3O4 (s) + 4H2 (g)}\]
Predict which of the following reaction will have the appreciable concentration of reactants and products:
- \[\ce{Cl2 (g) ⇌ 2Cl (g)}\] Kc = 5 ×10–39
- \[\ce{Cl2 (g) + 2NO (g) ⇌ 2NOCl (g)}\] Kc = 3.7 × 108
- \[\ce{Cl2 (g) + 2NO2 (g) ⇌ 2NO2Cl (g)}\] Kc = 1.8
The reaction, \[\ce{CO(g) + 3H2(g) ↔ CH4(g) + H2O(g)}\] is at equilibrium at 1300 K in a 1L flask. It also contains 0.30 mol of CO, 0.10 mol of H2 and 0.02 mol of H2O and an unknown amount of CH4 in the flask. Determine the concentration of CH4 in the mixture. The equilibrium constant, Kc for the reaction at the given temperature is 3.90.
At 500 K, equilibrium constant, \[\ce{K_c}\], for the following reaction is 5.
\[\ce{1/2 H2 (g) + 1/2 I2 (g) ⇌ HI (g)}\]
What would be the equilibrium constant \[\ce{K_c}\] for the reaction
\[\ce{2HI (g) ⇌ H2 (g) + I2 (g)}\]
For the reaction,
\[\ce{N2 + O2(g) ⇌ 2NO(g)}\]
the equilibrium constant is K1. The equilibrium constant is K2 for the reaction
\[\ce{2NO(g) + O2(g) ⇌ 2NO2(g)}\]
What is "K" for the reaction:
\[\ce{NO2(g) ⇌ 1/2 N2(g) + O2(g)}\]?
The stepwise formation of [Cu(NH3)4]2+ is given below:
\[\ce{Cu^{2+} + NH3 <=>[K1] [Cu(NH3)]^{2+}}\]
\[\ce{[Cu(NH3)]^{2+} + NH3 <=>[K2] [Cu(NH3)2]^{2+}}\]
\[\ce{[Cu(NH3)2]^{2+} + NH3 <=>[K3] [Cu(NH3)3]^{2+}}\]
\[\ce{[Cu(NH3)3]^{2+} + NH3 <=>[K4] [Cu(NH3)4]^{2+}}\]
The value of stability constants K1, K2, K3 and K4 are 104, 1.58 × 102, 5 × 103 and 102 respectively. The overall equilibrium constant for dissociation of [Cu(NH3)4]2+ is x × 10−12. The value of x is ______. (Rounded-off to the nearest integer)
For the reaction \[\ce{A(g) <=> B(g)}\] at 495 K, ΔG° = −9.478 kJ mol−1
If we start the reaction in a closed container at 495 K with 22 millimoles of A, the amount of B in the equilibrium mixture is ______ millimoles. (Round off to the Nearest Integer).
[R = 8.314 J mol−1 K−1; ln 10 = 2.303]
The value of Kc is 64 at 800 K for the reaction \[\ce{N2(g) + 3H2(g) <=> 2NH3(g)}\].
The value of Kc for the following reaction is:
\[\ce{NH3(g) <=> 1/2N2(g) + 3/2H2(g)}\]
In which one of the following equilibria, KP ≠ Kc?
A solid XY kept in an evacuated sealed container undergoes decomposition to form a mixture of gases X and Y at temperature T. The equilibrium pressure is 10 bar in the vessel. Kp for this reaction is ______.