Advertisements
Advertisements
Question
Nitric oxide reacts with Br2 and gives nitrosyl bromide as per reaction given below:
\[\ce{2NO(g) + Br2 (g) ⇌ 2NOBr (g)}\]
When 0.087 mol of NO and 0.0437 mol of Br2 are mixed in a closed container at the constant temperature, 0.0518 mol of NOBr is obtained at equilibrium. Calculate the equilibrium amount of NO and Br2.
Solution
The given reaction is:
\[\ce{\underset{\text{2 mol}}{2NO_{(g)}} + \underset{1 mol}{Br_{2(g)}} ⇌ \underset{2 mol}{2NOBr_{(g)}}}\]
Now, 2 mol of NOBr are formed from 2 mol of NO. Therefore, 0.0518 mol of NOBr are formed from 0.0518 mol of NO.
Again, 2 mol of NOBr are formed from 1 mol of Br.
Therefore, 0.0518 mol of NOBr are formed from `0.0518/2` mol of Br, or
0.0259 mol of NO.
The amount of NO and Br present initially is as follows:
[NO] = 0.087 mol [Br2] = 0.0437 mol
Therefore, the amount of NO present at equilibrium is:
[NO] = 0.087 - 0.0518
= 0.0352 mol
And, the amount of Br present at equilibrium is:
[Br2] = 0.0437 – 0.0259
= 0.0178 mol
APPEARS IN
RELATED QUESTIONS
What is Kc for the following equilibrium when the equilibrium concentration of each substance is: [SO2] = 0.60 M, [O2] = 0.82 M and [SO3] = 1.90 M?
\[\ce{2SO2(g) + O2(g) ⇌ 2SO3(g)}\]
Write the expression for the equilibrium constant, Kc for each of the following reactions:
\[\ce{2NOCl (g) ⇌ 2NO (g) + Cl2 (g)}\]
Write the expression for the equilibrium constant, Kc for the following reactions:
\[\ce{2Cu(NO3)2 (s) ⇌ 2CuO (s) + 4NO2 (g) + O2 (g)}\]
Write the expression for the equilibrium constant, Kc for the following reactions:
\[\ce{CH3COOC2H5(aq) + H2O(l) ⇌CH3COOH (aq) + C2H5OH (aq)}\]
What is the equilibrium concentration of each of the substances in the equilibrium when the initial concentration of ICl was 0.78 M?
\[\ce{2 ICl(g) ⇌ I2(g) + Cl2(g)}\]; KC = 0.14
Calculate a) ΔG°and b) the equilibrium constant for the formation of NO2 from NO and O2 at 298 K
\[\ce{NO(g) + 1/2 O_2 (g) <=> NO_2(g)}\]
where ΔfG⊝ (NO2) = 52.0 kJ/mol
ΔfG⊝ (NO) = 87.0 kJ/mol
ΔfG⊝ (O2) = 0 kJ/mol
Does the number of moles of reaction products increase, decrease or remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?
\[\ce{3Fe (s) + 4H2O (g) ⇌ Fe3O4 (s) + 4H2 (g)}\]
The value of Kc for the reaction 3O2 (g) ↔ 2O3 (g) is 2.0 ×10–50 at 25°C. If the equilibrium concentration of O2 in the air at 25°C is 1.6 ×10–2, what is the concentration of O3?
The reaction, \[\ce{CO(g) + 3H2(g) ↔ CH4(g) + H2O(g)}\] is at equilibrium at 1300 K in a 1L flask. It also contains 0.30 mol of CO, 0.10 mol of H2 and 0.02 mol of H2O and an unknown amount of CH4 in the flask. Determine the concentration of CH4 in the mixture. The equilibrium constant, Kc for the reaction at the given temperature is 3.90.
For the reaction \[\ce{H2 (g) + I2 (g) ⇌ 2HI (g)}\], the standard free energy is ∆GΘ > 0. The equilibrium constant (K ) would be ______.
At 1990 K and 1 atm pressure, there are equal numbers of Cl2 molecules and Cl atoms in the reaction mixture. The value of Kp for the reaction Cl2(g) ⇌ 2Cl(g) under the above conditions is x × 10−1. The value of x is ______. (Rounded-off to the nearest integer)
For the reaction \[\ce{A(g) <=> B(g)}\] at 495 K, ΔG° = −9.478 kJ mol−1
If we start the reaction in a closed container at 495 K with 22 millimoles of A, the amount of B in the equilibrium mixture is ______ millimoles. (Round off to the Nearest Integer).
[R = 8.314 J mol−1 K−1; ln 10 = 2.303]
The equilibrium constant for the reaction is ______ × 1026.
\[\ce{Fe + CuSO4 <=> FeSO4 + Cu}\] at 25°C.
Given `"E"_("Fe"//"Fe"^(2+))^0` = 0.44 V
`"E"_("Cu"//"Cu"^(2+))^0` = - 0.337 V
The value of Kc is 64 at 800 K for the reaction \[\ce{N2(g) + 3H2(g) <=> 2NH3(g)}\].
The value of Kc for the following reaction is:
\[\ce{NH3(g) <=> 1/2N2(g) + 3/2H2(g)}\]
In which one of the following equilibria, KP ≠ Kc?
A solid XY kept in an evacuated sealed container undergoes decomposition to form a mixture of gases X and Y at temperature T. The equilibrium pressure is 10 bar in the vessel. Kp for this reaction is ______.