English
Karnataka Board PUCPUC Science Class 11

Predict Which of the Following Reaction Will Have the Appreciable Concentration of Reactants and Products: - Chemistry

Advertisements
Advertisements

Question

Predict which of the following reaction will have the appreciable concentration of reactants and products:

  1. \[\ce{Cl2 (g) ⇌ 2Cl (g)}\] Kc = 5 ×10–39
  2. \[\ce{Cl2 (g) + 2NO (g) ⇌ 2NOCl (g)}\] Kc = 3.7 × 108
  3. \[\ce{Cl2 (g) + 2NO2 (g) ⇌ 2NO2Cl (g)}\] Kc = 1.8
Short Note

Solution

Following conclusions can be drawn from the values of Kc .

  1. Since the value of Kc is very small, this means that the molar concentration of the products is very small as compared to that of the reactants.
  2. Since the value of Kc is quite large, this means that the molar concentration of the products is very large as compared to that of the reactants
  3. Since the value of Kc is 1.8, this means that both the products and reactants have appreciable concentration.
shaalaa.com
Law of Chemical Equilibrium and Equilibrium Constant
  Is there an error in this question or solution?
Chapter 7: Equilibrium - EXERCISES [Page 236]

APPEARS IN

NCERT Chemistry - Part 1 and 2 [English] Class 11
Chapter 7 Equilibrium
EXERCISES | Q 7.32 | Page 236

RELATED QUESTIONS

What is Kc for the following equilibrium when the equilibrium concentration of each substance is: [SO2] = 0.60 M, [O2] = 0.82 M and [SO3] = 1.90 M?

\[\ce{2SO2(g) + O2(g) ⇌ 2SO3(g)}\]


Write the expression for the equilibrium constant, Kc for each of the following reactions:

\[\ce{2NOCl (g) ⇌ 2NO (g) + Cl2 (g)}\]


Write the expression for the equilibrium constant, Kc for the following reactions:

\[\ce{2Cu(NO3)2 (s) ⇌ 2CuO (s) + 4NO2 (g) + O2 (g)}\]


Write the expression for the equilibrium constant, Kc for the following reactions

\[\ce{I2 (s) + 5F2 ⇌ 2IF5}\]


Nitric oxide reacts with Br2 and gives nitrosyl bromide as per reaction given below:

\[\ce{2NO(g) + Br2 (g) ⇌ 2NOBr (g)}\]

When 0.087 mol of NO and 0.0437 mol of Br2 are mixed in a closed container at the constant temperature, 0.0518 mol of NOBr is obtained at equilibrium. Calculate the equilibrium amount of NO and Br2.


One mole of H2O and one mole of CO are taken in 10 L vessel and heated to 725 K. At equilibrium, 40% of water (by mass) reacts with CO according to the equation, 

\[\ce{H2O (g) + CO (g) ⇌ H2 (g) + CO2 (g)}\] 

Calculate the equilibrium constant for the reaction.


Does the number of moles of reaction products increase, decrease or remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?

\[\ce{3Fe (s) + 4H2O (g) ⇌ Fe3O4 (s) + 4H2 (g)}\]


The value of Kc for the reaction 3O2 (g) ↔ 2O3 (g) is 2.0 ×10–50 at 25°C. If the equilibrium concentration of O2 in the air at 25°C is 1.6 ×10–2, what is the concentration of O3?


The reaction, \[\ce{CO(g) + 3H2(g) ↔ CH4(g) + H2O(g)}\] is at equilibrium at 1300 K in a 1L flask. It also contains 0.30 mol of CO, 0.10 mol of H2 and 0.02 mol of H2O and an unknown amount of CH4 in the flask. Determine the concentration of CH4 in the mixture. The equilibrium constant, Kc for the reaction at the given temperature is 3.90.


For the reaction : \[\ce{N2 (g) + 3H2 (g) ⇌ 2NH3 (g)}\]

Equilibrium constant `K_C = ([NH3]^2)/([N_2][H_2]^3)`

Some reactions are written below in Column I and their equilibrium constants in terms of Kc are written in Column II. Match the following reactions with the corresponding equilibrium constant

Column I (Reaction) Column II (Equilibrium constant)
(i) \[\ce{2N2 (g) + 6H2 (g) ⇌ 4NH3 (g)}\] (a) `2K_c`
(ii) \[\ce{2NH3 (g) ⇌ N2 (g) + 3H2 (g)}\] (b) `K_c^(1/2)`
(iii) \[\ce{1/2 N2 (g) + 3/2 H2 (g) ⇌ NH3 (g)}\] (c) `1/K_c`
  (d) `K_c^2`

Match standard free energy of the reaction with the corresponding equilibrium constant.

Column I Column II
(i) ∆GΘ > 0 (a) K > 1
(ii) ∆GΘ > 0  (b) K = 1
(iii) ∆GΘ = 0 (c) K = 0
  (d) K < 1

The stepwise formation of [Cu(NH3)4]2+ is given below:

\[\ce{Cu^{2+} + NH3 <=>[K1] [Cu(NH3)]^{2+}}\]

\[\ce{[Cu(NH3)]^{2+} + NH3 <=>[K2] [Cu(NH3)2]^{2+}}\]

\[\ce{[Cu(NH3)2]^{2+} + NH3 <=>[K3] [Cu(NH3)3]^{2+}}\]

\[\ce{[Cu(NH3)3]^{2+} + NH3 <=>[K4] [Cu(NH3)4]^{2+}}\]

The value of stability constants K1, K2, K3 and K4 are 104, 1.58 × 102, 5 × 103 and 102 respectively. The overall equilibrium constant for dissociation of [Cu(NH3)4]2+ is x × 10−12. The value of x is ______. (Rounded-off to the nearest integer)


An equilibrium system for the reaction between hydrogen and iodine to give hydrogen iodide at 765 K in a 5 litre volume contains 0.4 mole of hydrogen, 0.4 mole of iodine and 2.4 moles of hydrogen iodide.

\[\ce{H2 + I2 <=> 2HI}\]

The equilibrium constant for the reaction is:


For which of the following Kp is less than Kc?


The equilibrium constant for the reaction is ______ × 1026.

\[\ce{Fe + CuSO4 <=> FeSO4 + Cu}\] at 25°C.

Given `"E"_("Fe"//"Fe"^(2+))^0` = 0.44 V

`"E"_("Cu"//"Cu"^(2+))^0` = - 0.337 V


The decomposition of N2O4 to NO2 was carried out in chloroform at 280°C. At equilibrium, 0.2 mol of N2O4 and 2 × 10−3 mol of NO2 were present in 2 ℓ of the solution. The equilibrium constant for the reaction \[\ce{N2O4 <=> 2NO2}\] is ______.


The value of Kc is 64 at 800 K for the reaction \[\ce{N2(g) + 3H2(g) <=> 2NH3(g)}\].

The value of Kc for the following reaction is:

\[\ce{NH3(g) <=> 1/2N2(g) + 3/2H2(g)}\]


A solid XY kept in an evacuated sealed container undergoes decomposition to form a mixture of gases X and Y at temperature T. The equilibrium pressure is 10 bar in the vessel. Kp for this reaction is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×