Advertisements
Advertisements
Question
"The volume of a cone V is equal to the product of one third of π and square of radius r of the base and the height h". Express this statement as a formula. Make r the subject formula. Find r, when V = 1232cm3, π = `(22)/(7)`, h = 24cm.
Solution
Volume of cone = V
Product of one third of π and square of radius r of the base and the height h = `(1)/(3)pi"r"^2"h"`
So, V = `(1)/(3)pi"r"^2"h"`
⇒ `(3"V")/(pi"h")` = r2
⇒ r = `sqrt((3"V")/(pi"h")`
Substituting V = 1232cm3, π = `(22)/(7)`, h = 24cm
⇒ r = `sqrt((3 xx 1232)/(22/7 xx 24)`
= `sqrt(49)`
= 7cm.
APPEARS IN
RELATED QUESTIONS
The simple interest on a sum of money is the product of the sum of money, the number of years and the rate percentage. Write the formula to find the simple interest on Rs A for T years at R% per annum.
The volume V, of a cone is equal to one third of π times the cube of the radius. Find a formula for it.
The arithmetic mean M of the five numbers a, b, c, d, e is equal to their sum divided by the number of quantities. Express it as a formula.
A man bought 25a articles at 30p paisa each and sold them at 20q paisa each. Find his profit in rupees.
Make R the subject of formula A = `"P"(1 + "R"/100)^"N"`
Make L the subject of formula T = `2pisqrt("L"/"G")`
Make R2 the subject of formula R2 = 4π(R12 - R22)
Make y the subject of the formula `x/"a" + y/"b" `= 1. Find y, when a = 2, b = 8 and x = 5.
Make g the subject of the formula v2 = u2 - 2gh. Find g, when v = 9.8, u = 41.5 and h = 25.4.
Make f the subject of the formula D = `sqrt((("f" + "p")/("f" - "p"))`. Find f, when D = 13 and P = 21.