English
Karnataka Board PUCPUC Science Class 11

Two Bar Magnets Are Placed Close to Each Other with Their Opposite Poles Facing Each Other. in Absence of Other Forces, the Magnets Are Pulled Towards Each Other and Their Kinetic Energy Increases. - Physics

Advertisements
Advertisements

Question

Two bar magnets are placed close to each other with their opposite poles facing each other. In absence of other forces, the magnets are pulled towards each other and their kinetic energy increases. Does it contradict our earlier knowledge that magnetic forces cannot do any work and hence cannot increase kinetic energy of a system?

Short Note

Solution

Yes, it contradicts our earlier knowledge that magnetic forces cannot do any work and hence cannot increase the kinetic energy of the system. When opposite poles are facing each other, an attractive force acts between them so the magnets are pulled towards each other. As the two magnets come close to each other so the force between them increases and hence, the kinetic energy also increases.

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Permanent Magnets - Short Answers [Page 275]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 14 Permanent Magnets
Short Answers | Q 7 | Page 275

RELATED QUESTIONS

How are the magnetic field lines different from the electrostatic field lines?


An iron needle is attracted to the ends of a bar magnet but not to the middle region of the magnet. Is the material making up the ends of a bare magnet different from that of the middle  region?


Answer the following question in brief.

What happens if a bar magnet is cut into two pieces transverse to its length/along its length?


Solve the following problem.

A magnetic pole of a bar magnet with a pole strength of 100 A m is 20 cm away from the centre of a bar magnet. The bar magnet has a pole strength of 200 A m and has a length of 5 cm. If the magnetic pole is on the axis of the bar magnet, find the force on the magnetic pole.


Answer the following question in detail.

A circular magnet is made with its north pole at the centre, separated from the surrounding circular south pole by an air gap. Draw the magnetic field lines in the gap.


Answer the following question in detail.

Two bar magnets are placed on a horizontal surface. Draw magnetic lines around them. Mark the position of any neutral points (points where there is no resultant magnetic field) on your diagram.


A short bar magnet placed with its axis at 30° with a uniform external magnetic field of 0.25 T experiences a torque of magnitude equal to 4.5 × 10–2 J. What is the magnitude of magnetic moment of the magnet?


A closely wound solenoid of 2000 turns and area of cross-section 1.6 × 10-4 m2 , carrying a current of 4.0 A, is suspended through its centre allowing it to turn in a horizontal plane.

What is the force and torque on the solenoid if a uniform horizontal magnetic field of 7.5 × 10-2 T is set up at an angle of 30° with the axis of the solenoid?


Which of the following statements about bar magnet is correct?


Which of the following statement about magnetic field lines is true?


The magnetic moment of atomic neon is equal to


At a certain 100 p of reduces 0.0/57 m carrier a current of 2 amp. The magnetic field at the centre of the coop is [`mu_0 = 4pi xx 10^-7` wb/amp – m]


A particle having charge 100 times that of an electron is revolving in a circular path by radius 0.8 with one rotation per second. The magnetic field produced at the centre is


Magnetic dipole moment is a ______


A proton has spin and magnetic moment just like an electron. Why then its effect is neglected in magnetism of materials?


A ball of superconducting material is dipped in liquid nitrogen and placed near a bar magnet. (i) In which direction will it move? (ii) What will be the direction of it’s magnetic moment?


There are two current carrying planar coils made each from identical wires of length L. C1 is circular (radius R) and C2 is square (side a). They are so constructed that they have same frequency of oscillation when they are placed in the same uniform B and carry the same current. Find a in terms of R.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×