Advertisements
Advertisements
Question
Two concave mirrors of equal radii of curvature R are fixed on a stand facing opposite directions. The whole system has a mass m and is kept on a frictionless horizontal table following figure. Two blocks A and B, each of mass m, are placed on the two sides of the stand. At t = 0, the separation between A and the mirrors is 2 R and also the separation between B and the mirrors is 2 R. The block B moves towards the mirror at a speed v. All collisions which take place are elastic. Taking the original position of the mirrors-stand system to be x = 0 and X-axis along AB, find the position of the images of A and B at t = (a) `R/v` (b) `3R/v` (c) `5R/v`.
Solution
Given,
R is the radii of curvature of two concave mirrors and M is the mass of the whole system.
Mass of the two blocks A and B is m.
As per the question,
At t = 0,
distance between block A and B is 2R
Block B is moving at a speed v towards the mirror.
Original position of the whole system at x = 0
(a)
At time t = `R/v`
The block B moved `( v xx R/v = R )` R distance towards the mirror.
For block A,
object distance, u = − 2R
focal length of the mirror, f = −`R/2`
Using the mirror formula:
`1/v + 1/u = 1/f`
`⇒ 1/v = 1/f - 1/u`
`⇒ -2/R + 1/(2R)`
Therefore, v = −
Position of the image of block A is at with respect to the given coordinate system.
For block B,
Object distance, u = − R
Focal length of the mirror, f = −
Using the mirror formula:
`1/v + 1/u = 1/f`
`⇒ 1/v = 1/f - 1/u`
`⇒ 1/v = -2/R + 1/R`
`⇒ 1/v = -1/R`
Therefore, v = − R
Position of the image of block B is at the same place.
Similarly,
(b)
At time `(3R)/v`
Block B, after colliding with the mirror must have come to rest because the collision is elastic. Due to this, the mirror has travelled a distance R towards the block A, i.e., towards left from its initial position.
So, at this time
For block A
Object distance, u = − R
Focal length of the mirror, f = − `R/2`
Using the mirror formula:
`1/v + 1/u = 1/f `
`⇒ 1/v = 1/f - 1/u`
`=-2/R + 1/R`
`=-1/R`
Therefore, v = − R
Position of the image of block A is at − 2R with respect to the given coordinate system.
For Block B,
Image of the block B is at the same place as it is at a distance of R from the mirror.
Therefore, the image of the block B is zero with respect to the given coordinate system.
(c)
At time `( 5R )/v`
In a similar manner, we can prove that the position of the image of block A and B will be at − 3R and `-(4R)/3` respectively.
APPEARS IN
RELATED QUESTIONS
An object is placed 15 cm in front of a convex lens of focal length 10 cm. Find the nature and position of the image formed. Where should a concave mirror of radius of curvature 20 cm be placed so that the final image is formed at the position of the object itself?
A mobile phone lies along the principal axis of a concave mirror. Show, with the help of a suitable diagram, the formation of its image. Explain why magnification is not uniform.
Suppose the lower half of the concave mirror's reflecting surface is covered with an opaque material. What effect this will have on the image of the object? Explain
A convex lens of focal length 20 cm is placed coaxially with a convex mirror of radius of curvature 20 cm. The two are kept 15 cm apart. A point object is placed 40 cm in front of the convex lens. Find the position of the image formed by this combination. Draw the ray diagram showing the image formation.
Draw a ray diagram to show image formation when the concave mirror produces a real, inverted and magnified image of the object.
A convex lens of focal length 25 cm is placed coaxially in contact with a concave lens of focal length 20 cm. Determine the power of the combination. Will the system be converging or diverging in nature?
A convex lens of focal length 30 cm is placed coaxially in contact with a concave lens of focal length 40 cm. Determine the power of the combination. Will the system be converging or diverging in nature?
A convex lens of focal length f1 is kept in contact with a concave lens of focal length f2. Find the focal length of the combination.
An object AB is kept in front of a concave mirror as shown in the figure.
(i) Complete the ray diagram showing the image formation of the object.
(ii) How will the position and intensity of the image be affected if the lower half of the mirror’s reflecting surface is painted black?
A concave mirror of radius R is kept on a horizontal table (See figure). Water (refractive index = μ) is poured into it up to a height h. Where should an object be placed so that its image is formed on itself?
A hemispherical portion of the surface of a solid glass sphere (μ = 1.5) of radius r is silvered to make the inner side reflecting. An object is placed on the axis of the hemisphere at a distance 3r from the centre of the sphere. The light from the object is refracted at the unsilvered part, then reflected from the silvered part and again refracted at the unsilvered part. Locate the final image formed.
A small block of mass m and a concave mirror of radius R fitted with a stand lie on a smooth horizontal table with a separation d between them. The mirror together with its stand has a mass m. The block is pushed at t = 0 towards the mirror so that it starts moving towards the mirror at a constant speed V and collides with it. The collision is perfectly elastic. Find the velocity of the image (a) at a time t < d/V, (b) at a time t > d/V.
A gun of mass M fires a bullet of mass m with a horizontal speed V. The gun is fitted with a concave mirror of focal length f facing towards the receding bullet. Find the speed of separation of the bullet and the image just after the gun was fired.
In the case of a concave mirror of focal length f , when an object is kept between f and 2 f , show that its image is formed beyond 2 f .