Advertisements
Advertisements
Question
Use factor theorem to factorise the following polynominals completely.
x3 + 2x2 – 5x – 6
Solution
Let f(x) = x3 + 2x2 – 5x – 6
Factors of (∵ 6 = ± 1 : ± 2, ± 3, ±)
Let x = –1, then
f(–1) = (–1)3 + 2(–1)2 – 5(–1) – 6
= –1 + 2(1) + 5 – 6
= –1 + 2 + 5 – 6
= 7 – 7
= 0
∵ f(–1) = 0
∴ x + 1 is a factor of f(x).
Similarly, (x - 2) and (x + 3) are the factors of f(x).
Since f(x) is a polynomial of degree 3.
So, it can not have more than three linear factors.
∴ f(x) = k(x + 1) (x - 2)(x + 3) ...(1)
⇒ x3 + 2x2 - 5x - 6
= k(x + 1)(x - 2)(x + 3)
Putting x = 0 on both sides, we get
-6 = k(1)(-2)(3)
⇒ k = 1
Putting k = 1 in equation (1), we get
f(x) = (x + 1)(x + 3)
Hence, x3 + 2x2 - 5x - 6 = (x + 1)(x - 2)(x + 3)
APPEARS IN
RELATED QUESTIONS
If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b.
Find the value of ‘k’ if (x – 2) is a factor of x3 + 2x2 – kx + 10. Hence determine whether (x + 5) is also a factor.
Prove by factor theorem that
(2x+1) is a factor of 4x3 + 12x2 + 7x +1
Prove that (x - y) is a factor of yz( y2 - z2) + zx( z2 - x2) + xy ( x2 - y2)
Prove that (5x - 4) is a factor of the polynomial f(x) = 5x3 - 4x2 - 5x +4. Hence factorize It completely.
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = x3 + x2 + 3x + 175 and g(x) = x + 5.
Using factor theorem, show that (x - 3) is a factor of x3 - 7x2 + 15x - 9, Hence, factorise the given expression completely.
If both (x − 2) and `(x - 1/2)` is the factors of ax2 + 5x + b, then show that a = b
If (x – 1) divides the polynomial kx3 – 2x2 + 25x – 26 without remainder, then find the value of k
Factors of 4 + 4x – x2 – x3 are ______.