Advertisements
Advertisements
Question
Verify the property x × (y + z) = x × y + x × z of rational numbers by taking.
`x = (-1)/2, y = 3/4, z = 1/4`
Solution
Given, `x = (-1)/2, y = 3/4, z = 1/4`
Now, LHS = x × (y + z)
= `(-1)/2 xx (3/4 + 1/4)`
= `(-1)/2 xx 4/4`
= `(-1)/2`
And RHS = x × y + x × z
= `(-1)/2 xx 3/4 + ((-1)/2) xx 1/4`
= `(-3)/8 - 1/8`
= `(-3 - 1)/8`
= `(-4)/8`
= `(-1)/2`
∴ LHS = RHS
Hence, x × (y + z) = x × y + x × z
APPEARS IN
RELATED QUESTIONS
Verify the property: x × (y × z) = (x × y) × z by taking:
Verify the property: x × (y × z) = (x × y) × z by taking:
Verify the property: x × (y + z) = x × y + x × z by taking:
Use the distributivity of multiplication of rational numbers over their addition to simplify:
Name the property of multiplication of rational numbers illustrated by the following statements:
By what number should we multiply \[\frac{- 1}{6}\] so that the product may be \[\frac{- 23}{9}?\]
By what number should \[\frac{- 3}{4}\] be multiplied in order to produce \[\frac{2}{3}?\]
Which of the following is an example of distributive property of multiplication over addition for rational numbers?
Name the property used in the following.
`-2/3 xx [3/4 + (-1)/2] = [(-2)/3 xx 3/4] + [(-2)/3 xx (-1)/2]`
Four friends had a competition to see how far could they hop on one foot. The table given shows the distance covered by each.
Name | Distance covered (km) |
Seema | `1/25` |
Nancy | `1/32` |
Megha | `1/40` |
Soni | `1/20` |
Who walked farther, Nancy or Megha?