Advertisements
Advertisements
Question
वह प्रांत जिसके लिए f(x) = 3x2 − 1 तथा g(x) = 3 + x द्वारा परिभाषित फलन f तथा g समान हैं,
Options
`{-1, 4/3}`
`[-1, 4/3]`
`(-1, 4/3)`
`[-1, 4/3)`
Solution
`underline({-1, 4/3}`
स्पष्टीकरण:
f(x) = g(x)
⇒ 3x2 − 1 = 3 + x
⇒ 3x2 − x − 4 = 0 …(i)
समीकरण (i) हल करें
⇒ 3x2 − 4x + 3x − 4 = 0
⇒ x(3x − 4) + 1(3x − 4) = 0 or ⇒ (x + 1)(3x − 4) = 0
⇒ x + 1 = 0 or ⇒ 3x − 4 = 0
⇒ x = −1 or x = `4/3`
इसलिए, प्रांत = `{−1, 4/3}`
APPEARS IN
RELATED QUESTIONS
क्या निम्नलिखित संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए।
R1 = {(2, 3), (`1/2` , 0), (2, 7), (–4, 6)}
क्या निम्नलिखित संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए।
R2 = {(x, | x |) | x एक वास्तविक संख्या है}
वह प्रांत ज्ञात करो जिसके लिए फलन f(x) = 2x2 – 1 और g(x) = 1 – 3x समान हैं।
निम्नलिखित फलन में से प्रत्येक का प्रांत ज्ञात कीजिए:
f(x) = `x/(x^2 + 3x + 2)`
निम्नलिखित फलन का परिसर ज्ञात कीजिए:
`|x - 4|/(x - 4)`
मान लीजिए कि f तथा g निम्नलिखित दो फलन हैं,
f = {(2, 4), (5, 6), (8, –1), (10, –3)}
g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, –5)} तो f + g का प्रांत ______ होगा।
यदि P = {x : x < 3, x ∈ N}, Q = {x : x ≤ 2, x ∈ W}, तो (P ∪ Q) × (P ∩ Q) ज्ञात कीजिए, जहाँ W पूर्ण संख्याओं (ऋणेत्तर पूर्णांकों) का समुच्चय है।
x का वह मान ज्ञात कीजिए जिसके लिए फलन f(x) = 3x2 − 1 और फलन g(x) = 3 + x समान हैं।
क्या g(x) = {(1, 1), (2, 3), (3, 5), (4, 7)} एक फलन है? औचित्य भी बताइए। यदि इसे नियम g(x) = αx + β द्वारा वर्णित किया जाये तो α और β को क्या मान दिया जा सकता है?
नीचे दिये फलन का परिसर ज्ञात कीजिए:
f(x) = 1 – |x − 2|
नीचे दिये फलन का परिसर ज्ञात कीजिए:
f(x) = |x − 3|
नीचे दिये फलन का परिसर ज्ञात कीजिए:
f(x) = 1 + 3 cos2x
(संकेत: −1 ≤ cos2x ≤ 1 ⇒ −3 ≤ 3 cos2x ≤ 3 ⇒ −2 ≤ 1 + 3 cos2x ≤ 4)
यदि f(x) = `(x−1)/(x+1)`, तो सिद्ध कीजिए कि
`f(1/x) = -f(x)`
यदि f(x) = `(x−1)/(x+1)`, तो सिद्ध कीजिए कि
`f(-1/x) = (-1)/f(x)`
मान लीजिए कि f(x) = `sqrtx` तथा g(x) = x दो फलन प्रांत R+ ∪ {0} में परिभाषित हैं तो निम्नलिखित ज्ञात कीजिए:
(f + g) (x)
मान लीजिए कि f(x) = `sqrtx` तथा g(x) = x दो फलन प्रांत R+ ∪ {0} में परिभाषित हैं तो निम्नलिखित ज्ञात कीजिए:
(fg) (x)
यदि f(x) = y = `(ax−b)/(cx−a)`, तो सिद्ध कीजिए कि f(y) = x.