English

F(x) = 2 − ∣x − 5∣ द्वारा प्रदत्त फलन f का प्रांत तथा परिसर निम्नलिखित प्रकार है, - Mathematics (गणित)

Advertisements
Advertisements

Question

f(x) = 2 − ∣x − 5∣ द्वारा प्रदत्त फलन f का प्रांत तथा परिसर निम्नलिखित प्रकार है,

Options

  • प्रांत = R+, परिसर = (–∞, 1]

  • प्रांत = R, परिसर = (–∞, 2]

  • प्रांत = R, परिसर = (–∞, 2)

  • प्रांत = R+, परिसर = (–∞, 2]

MCQ

Solution

प्रांत = R, परिसर = (–∞, 2]

स्पष्टीकरण:

ध्यान दें कि यह दिया गया है, f(x) = 2 − ∣x − 5∣,

समझें कि f(x) को परिभाषित किया गया है x ∈ R

इसलिए, f(x) का प्रांत है f(x) = R

परिसर की गणना करें।

​∣x − 5∣ ≥ 0 ⇒ −∣x − 5∣ ≤ 0

⇒ 2 − ∣x − 5∣ ≤ 2

⇒ f(x) ≤ 2​

इसलिए, f(x) का परिसर है f(x) = (−∞, 2]

shaalaa.com
संबंध
  Is there an error in this question or solution?
Chapter 2: संबंध एवं फलन - प्रश्नावली [Page 32]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 11
Chapter 2 संबंध एवं फलन
प्रश्नावली | Q 34. | Page 32

RELATED QUESTIONS

प्राकृत संख्याओं के समुच्चय पर R = {x, y) : y = x + 5, x संख्या 4 से कम, एक प्राकृत संख्या है, x,y ∈ N} द्वारा एक संबंध R परिभाषित कीजिए। इस संबंध को रोस्टर रूप में इसके प्रांत और परिसर लिखिए।


R = {(x, x + 5) : x ∈ {0, 1, 2, 3, 4, 5}} द्वारा परिभाषित संबंध R के प्रांत और परिसर ज्ञात कीजिए।


संबंध R = {(x, x3) : x संख्या 10 से कम एक अभाज्य संख्या है} को रोस्टर रूप में लिखिए।


मान लीजिए कि R, Z पर, R = {(a, b) : a, b ϵ z, a – b एक पूर्णांक है}, द्वारा परिभाषित एक संबंध है। R के प्रांत व परिसर ज्ञात कीजिए।


संबंध f, \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\] द्वारा परिभाषित है।

संबंध g, \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\] द्वारा परिभाषित है।

दर्शाइए कि क्यों f एक फलन है और g फलन नहीं है।


मान लीजिए कि A तथा B कोई ऐसे दो समुच्चय हैं कि n(B) = p, n(A) = q, तो समुच्चयों f : A → B कुल संख्या ______ है।


दिया हुआ है, A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A} तो उन क्रमित युग्मों को ज्ञात कीजिए, जो निम्नलिखित प्रतिबंध को संतुष्ट करता हैं: x + y < 5


दिया हुआ है, A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A} तो उन क्रमित युग्मों को ज्ञात कीजिए, जो निम्नलिखित प्रतिबंध को संतुष्ट करता हैं: x + y > 8


यदि R = {(x, y) : x, y ∈ W, x2 + y2 = 25} प्रदत्त है। R का प्रांत तथा परिसर ज्ञात कीजिए।


यदि R1 = {(x, y) ∣ y = 2x + 7, जहाँ x ∈ R और −5 ≤ x ≤ 5} एक संबंध है तो R1 का प्रांत तथा परिसर ज्ञात कीजिए।


क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:

h = {(4, 6), (3, 9), (−11, 6), (3, 11)}


क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:

g = `n, 1/n | n` एक धन पूर्णांक है


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = `1/sqrt(x + |x|)`


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = `(3x)/(2x - 8)`


नीचे दिये फलन का परिसर ज्ञात कीजिए:

f(x) = `3/(2  - x^2)`


फलन f(x) = `1/sqrt(x−5)` का प्रांत तथा परिसर ज्ञात कीजिए।


मान लीजिए कि n(A) = m, और n(B) = n, तो A से B में परिभाषित किये जा सकने वाले अरिक्त संबंधों की कुल संख्या ______


f(x) = `1/(1 - 2cosx)` का परिसर ______ है।


यदि f(x) = ax + b, जहाँ a और b पूर्णांक हैं। यदि f(-1) = -5 और f(3) = 3, तो ______


बताइए कि प्रश्न संख्या में दिये कथन सत्य हैं या असत्य है:

यदि (x − 2, y + 5) = `(−2, 1/3)`, तो x = 4, y = `(−14)/3`


R = {(a, b) : a, b ∈ N तथा a = b2} द्वारा परिभाषित N से N में, एक संबंध R है। क्या निम्नलिखित कथन सत्य है।

(a,b) ∈ R, (b, c) ∈ R का तात्पर्य है कि (a, c) ∈ R?

दशा में अपने उत्तर का औचित्य भी बताइए।


मान लीजिए A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} और f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}, क्या निम्नलिखित कथन सत्य है?

f, A से B में एक फलन है।

दशा में अपने उत्तर का औचित्य बताइए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×