English

संबंध f, f(x)={x2,0≤x≤33x,3≤x≤10 द्वारा परिभाषित है। संबंध g, g(x)={x2,0≤x≤23x,2≤x≤10 द्वारा परिभाषित है। दर्शाइए कि क्यों f एक फलन है और g फलन नहीं है। - Mathematics (गणित)

Advertisements
Advertisements

Question

संबंध f, \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\] द्वारा परिभाषित है।

संबंध g, \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\] द्वारा परिभाषित है।

दर्शाइए कि क्यों f एक फलन है और g फलन नहीं है।

Sum

Solution

फलन f को परिभाषित किया गया है।

\[f\left( x \right) = \begin{cases}x^2 & 0 \leqslant x \leqslant 3 \\ 3x & 3 \leqslant x \leqslant 10\end{cases}\] 

यह देखा गया है कि 0 ≤ x < 3, f (x) = x2 के लिए।

3 <  x ≤ 10, f (x) = 3x

साथ ही, x = 3, f(x) = 32 = 9.

f (x) = 3 × 3 = 9.

अर्थात्, x = 3, f (x) = 9.

इसलिए, 0 ≤ x ≤ 10 के लिए, f (x) का प्रतिबिंब अद्वितीय हैं।

इस प्रकार, दिया गया संबंध एक फलन है।

फिर से, संबंध g को इस प्रकार परिभाषित किया गया है।

\[g\left( x \right) = \begin{cases}x^2 , & 0 \leqslant x \leqslant 2 \\ 3x, & 2\leqslant x \leqslant 10\end{cases}\]

यह देखा जा सकता है कि x = 2g(x) = 22 = 4 और साथ ही, g(x) = 3 × 2 = 6.

इसलिए, संबंध g के क्षेत्र में 2 दो अलग-अलग प्रतिबिंबों से संबंधित है, यानी 4 और 6।

अत: यह संबंध कोई फलन नहीं है।

shaalaa.com
संबंध
  Is there an error in this question or solution?
Chapter 2: संबंध एवं फलन - अध्याय 2 पर विविध प्रश्नावली [Page 52]

APPEARS IN

NCERT Mathematics [Hindi] Class 11
Chapter 2 संबंध एवं फलन
अध्याय 2 पर विविध प्रश्नावली | Q 1. | Page 52

RELATED QUESTIONS

मान लीजिए A= {1, 2, 3, ……. 14}, R = {(x, y): 3x – y = 0, जहाँ x, Y ∈ A) द्वारा A से A का एक संबंध R लिखिए। इसके प्रांत, सहप्रांत और परिसर लिखिए।


प्राकृत संख्याओं के समुच्चय पर R = {x, y) : y = x + 5, x संख्या 4 से कम, एक प्राकृत संख्या है, x,y ∈ N} द्वारा एक संबंध R परिभाषित कीजिए। इस संबंध को रोस्टर रूप में इसके प्रांत और परिसर लिखिए।


A = {1, 2, 3, 5} और B = {4, 6, 9}, A से B में एक सम्बन्ध R = {x, y} : x और y का

अंतर विषम है, x ∈ A, y ∈ B} द्वारा परिभाषित कीजिए। R को रोस्टर रूप में लिखिए।


दी हुई आकृति समुच्चय P से Q का एक संबंध दर्शाती है।
इस संबंध को

  1. समुच्चय निर्माण रूप में
  2. रोस्टर रूप में लिखिए।

इसके प्रांत व परिसर क्या हैं?


R = {(x, x + 5) : x ∈ {0, 1, 2, 3, 4, 5}} द्वारा परिभाषित संबंध R के प्रांत और परिसर ज्ञात कीजिए।


मान लीजिए कि A = {x, y, z} और B = {1, 2}, A से B के संबंधों की संख्या ज्ञात कीजिए।


मान लीजिए कि A तथा B कोई ऐसे दो समुच्चय हैं कि n(B) = p, n(A) = q, तो समुच्चयों f : A → B कुल संख्या ______ है।


दिया हुआ है, A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A} तो उन क्रमित युग्मों को ज्ञात कीजिए, जो निम्नलिखित प्रतिबंध को संतुष्ट करता हैं: x + y = 5


दिया हुआ है, A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A} तो उन क्रमित युग्मों को ज्ञात कीजिए, जो निम्नलिखित प्रतिबंध को संतुष्ट करता हैं: x + y < 5


यदि R2 = {(x, y) ∣ x और y पूर्णांक हैं और x2 + y2 = 64} एक संबंध है, तो R2 ज्ञात कीजिए (रोस्टर रूप में लिखिए)।


क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:

g = `n, 1/n | n` एक धन पूर्णांक है


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = x|x|


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = `(x^3 - x +  3)/(x^2 - 1)`


फलन f(x) = `1/sqrt(x−5)` का प्रांत तथा परिसर ज्ञात कीजिए।


f(x) = `1/(1 - 2cosx)` का परिसर ______ है।


`sqrt(a^2 - x^2)` (a > 0) का प्रांत है।


f(x) = `sqrt(4 - x) + 1/sqrt(x^2 - 1)` द्वारा परिभाषित फलन f का प्रांत ______ है।


f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` द्वारा प्रदत्त (given) फलन f का प्रांत ______


f(x) = 2 − ∣x − 5∣ द्वारा प्रदत्त फलन f का प्रांत तथा परिसर निम्नलिखित प्रकार है,

बताइए कि प्रश्न संख्या में दिये कथन सत्य हैं या असत्य है:

यदि (x − 2, y + 5) = `(−2, 1/3)`, तो x = 4, y = `(−14)/3`


R = {(a, b) : a, b ∈ N तथा a = b2} द्वारा परिभाषित N से N में, एक संबंध R है। क्या निम्नलिखित कथन सत्य है।

(a,b) ∈ R, (b, c) ∈ R का तात्पर्य है कि (a, c) ∈ R?

दशा में अपने उत्तर का औचित्य भी बताइए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×