Advertisements
Advertisements
Question
मान लीजिए A= {1, 2, 3, ……. 14}, R = {(x, y): 3x – y = 0, जहाँ x, Y ∈ A) द्वारा A से A का एक संबंध R लिखिए। इसके प्रांत, सहप्रांत और परिसर लिखिए।
Solution
A से A से संबंध R के रूप में दिया गया है
R = {(x, y): 3x – y = 0, जहाँ x, y ∈ A}
यानी, R = {(x, y): 3x = y, जहाँ x, y ∈ A}
= {(x, 3x), जहाँ x, 3x ∈ A}
∴ R = {(1, 3), (2, 6), (3, 9), (4, 12)}
`[∵ 1 ≤ 3x ≤ 14, ∴ 1/3 ≤ x ≤ 14/3 ⇒ x = 1, 2, 3, 4]`
R के संबंध प्रांत में क्रमित युग्म के सभी पहले अवयवों का समुच्चय है।
R = {1, 2, 3, 4} का ∴प्रांत
पूरे समुच्चय A, संबंध का सहप्रांत R है।
∴ R का सहप्रांत = A = {1, 2, 3, …, 14}
R के संबंध परिसर में क्रमित युग्म के सभी दूसरे अवयवों का समुच्चय है।
R का परिसर = {3, 6, 9, 12}
APPEARS IN
RELATED QUESTIONS
दी हुई आकृति समुच्चय P से Q का एक संबंध दर्शाती है।
इस संबंध को
- समुच्चय निर्माण रूप में
- रोस्टर रूप में लिखिए।
इसके प्रांत व परिसर क्या हैं?
मान लीजिए कि A= {1, 2, 3, 4, 6) मान लीजिए कि R, A पर {(a, b) : a, b ϵ A, संख्या a संख्या b को यथावथ विभाजित करती है} द्वारा परिभाषित एक संबंध है।
- R को रोस्टर रूप में लिखिए।
- R का प्रांत ज्ञात कीजिए।
- R का परिसर ज्ञात कीजिए।
मान लीजिए कि A = {x, y, z} और B = {1, 2}, A से B के संबंधों की संख्या ज्ञात कीजिए।
संबंध f, \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\] द्वारा परिभाषित है।
संबंध g, \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\] द्वारा परिभाषित है।
दर्शाइए कि क्यों f एक फलन है और g फलन नहीं है।
मान लीजिए A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} और f= {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}, क्या निम्नलिखित कथन सत्य है?
f, A से B में एक संबंध है।
दशा में अपने उत्तर का औचित्य बताइए।
मान लीजिए कि A तथा B कोई ऐसे दो समुच्चय हैं कि n(B) = p, n(A) = q, तो समुच्चयों f : A → B कुल संख्या ______ है।
दिया हुआ है, A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A} तो उन क्रमित युग्मों को ज्ञात कीजिए, जो निम्नलिखित प्रतिबंध को संतुष्ट करता हैं: x + y = 5
दिया हुआ है, A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A} तो उन क्रमित युग्मों को ज्ञात कीजिए, जो निम्नलिखित प्रतिबंध को संतुष्ट करता हैं: x + y > 8
यदि R1 = {(x, y) ∣ y = 2x + 7, जहाँ x ∈ R और −5 ≤ x ≤ 5} एक संबंध है तो R1 का प्रांत तथा परिसर ज्ञात कीजिए।
यदि R3 = {(x, ∣x∣) ∣ x एक वास्तविक संख्या है} एक संबंध है, तो R3 का प्रांत तथा परिसर ज्ञात कीजिए।
क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:
h = {(4, 6), (3, 9), (−11, 6), (3, 11)}
क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:
g = `n, 1/n | n` एक धन पूर्णांक है
क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:
t = {(x, 3) ∣ x एक वास्तविक संख्या है}
नीचे दिये फलन का प्रांत ज्ञात कीजिए:
f(x) = `1/sqrt(1 - cosx)`
नीचे दिये फलन का प्रांत ज्ञात कीजिए:
f(x) = `1/sqrt(x + |x|)`
नीचे दिये फलन का प्रांत ज्ञात कीजिए:
f(x) = x|x|
नीचे दिये फलन का प्रांत ज्ञात कीजिए:
f(x) = `(x^3 - x + 3)/(x^2 - 1)`
नीचे दिये फलन का प्रांत ज्ञात कीजिए:
f(x) = `(3x)/(2x - 8)`
मान लीजिए कि n(A) = m, और n(B) = n, तो A से B में परिभाषित किये जा सकने वाले अरिक्त संबंधों की कुल संख्या ______
f(x) = `1/(1 - 2cosx)` का परिसर ______ है।
`sqrt(a^2 - x^2)` (a > 0) का प्रांत है।
यदि f(x) = ax + b, जहाँ a और b पूर्णांक हैं। यदि f(-1) = -5 और f(3) = 3, तो ______