मराठी

मान लीजिए A= {1, 2, 3, ……. 14}, R = {(x, y): 3x – y = 0, जहाँ x, Y ∈ A) द्वारा A से A का एक संबंध R लिखिए। इसके प्रांत, सहप्रांत और परिसर लिखिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

मान लीजिए A= {1, 2, 3, ……. 14}, R = {(x, y): 3x – y = 0, जहाँ x, Y ∈ A) द्वारा A से A का एक संबंध R लिखिए। इसके प्रांत, सहप्रांत और परिसर लिखिए।

बेरीज

उत्तर

A से A से संबंध R के रूप में दिया गया है

R = {(x, y): 3x – y = 0, जहाँ x, y ∈ A}

यानी, R = {(x, y): 3x = y, जहाँ x, y ∈ A}

= {(x, 3x), जहाँ x, 3x ∈ A}

∴ R = {(1, 3), (2, 6), (3, 9), (4, 12)}

`[∵ 1 ≤ 3x ≤ 14, ∴ 1/3 ≤ x ≤ 14/3 ⇒ x = 1, 2, 3, 4]`

R के संबंध प्रांत में क्रमित युग्म के सभी पहले अवयवों का समुच्चय है।

R = {1, 2, 3, 4} का ∴प्रांत

पूरे समुच्चय A, संबंध का सहप्रांत R है।

∴ R का सहप्रांत = A = {1, 2, 3, …, 14}

R के संबंध परिसर में क्रमित युग्म के सभी दूसरे अवयवों का समुच्चय है।

R का परिसर = {3, 6, 9, 12}

shaalaa.com
संबंध
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: संबंध एवं फलन - प्रश्नावली 2.2 [पृष्ठ ४१]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
पाठ 2 संबंध एवं फलन
प्रश्नावली 2.2 | Q 1. | पृष्ठ ४१

संबंधित प्रश्‍न

प्राकृत संख्याओं के समुच्चय पर R = {x, y) : y = x + 5, x संख्या 4 से कम, एक प्राकृत संख्या है, x,y ∈ N} द्वारा एक संबंध R परिभाषित कीजिए। इस संबंध को रोस्टर रूप में इसके प्रांत और परिसर लिखिए।


दी हुई आकृति समुच्चय P से Q का एक संबंध दर्शाती है।
इस संबंध को

  1. समुच्चय निर्माण रूप में
  2. रोस्टर रूप में लिखिए।

इसके प्रांत व परिसर क्या हैं?


संबंध R = {(x, x3) : x संख्या 10 से कम एक अभाज्य संख्या है} को रोस्टर रूप में लिखिए।


मान लीजिए कि R, Z पर, R = {(a, b) : a, b ϵ z, a – b एक पूर्णांक है}, द्वारा परिभाषित एक संबंध है। R के प्रांत व परिसर ज्ञात कीजिए।


मान लीजिए A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} और f= {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}, क्या निम्नलिखित कथन सत्य है?

f, A से B में एक संबंध है।

दशा में अपने उत्तर का औचित्य बताइए।


मान लीजिए कि A तथा B कोई ऐसे दो समुच्चय हैं कि n(B) = p, n(A) = q, तो समुच्चयों f : A → B कुल संख्या ______ है।


दिया हुआ है, A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A} तो उन क्रमित युग्मों को ज्ञात कीजिए, जो निम्नलिखित प्रतिबंध को संतुष्ट करता हैं: x + y = 5


यदि R = {(x, y) : x, y ∈ W, x2 + y2 = 25} प्रदत्त है। R का प्रांत तथा परिसर ज्ञात कीजिए।


यदि R1 = {(x, y) ∣ y = 2x + 7, जहाँ x ∈ R और −5 ≤ x ≤ 5} एक संबंध है तो R1 का प्रांत तथा परिसर ज्ञात कीजिए।


यदि R2 = {(x, y) ∣ x और y पूर्णांक हैं और x2 + y2 = 64} एक संबंध है, तो R2 ज्ञात कीजिए (रोस्टर रूप में लिखिए)।


क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:

h = {(4, 6), (3, 9), (−11, 6), (3, 11)}


क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:

g = `n, 1/n | n` एक धन पूर्णांक है


क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:

t = {(x, 3) ∣ x एक वास्तविक संख्या है}


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = `1/sqrt(1 - cosx)`


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = `(3x)/(2x - 8)`


नीचे दिये फलन का परिसर ज्ञात कीजिए:

f(x) = `3/(2  - x^2)`


मान लीजिए कि n(A) = m, और n(B) = n, तो A से B में परिभाषित किये जा सकने वाले अरिक्त संबंधों की कुल संख्या ______


`sqrt(a^2 - x^2)` (a > 0) का प्रांत है।


f(x) = `sqrt(4 - x) + 1/sqrt(x^2 - 1)` द्वारा परिभाषित फलन f का प्रांत ______ है।


f(x) = 2 − ∣x − 5∣ द्वारा प्रदत्त फलन f का प्रांत तथा परिसर निम्नलिखित प्रकार है,

बताइए कि प्रश्न संख्या में दिये कथन सत्य हैं या असत्य है:

यदि (x − 2, y + 5) = `(−2, 1/3)`, तो x = 4, y = `(−14)/3`


मान लीजिए A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} और f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}, क्या निम्नलिखित कथन सत्य है?

f, A से B में एक फलन है।

दशा में अपने उत्तर का औचित्य बताइए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×