Advertisements
Advertisements
प्रश्न
मान लीजिए कि R, Z पर, R = {(a, b) : a, b ϵ z, a – b एक पूर्णांक है}, द्वारा परिभाषित एक संबंध है। R के प्रांत व परिसर ज्ञात कीजिए।
उत्तर
R = {(a, b): a, b ∈ Z, a – b एक पूर्णांक है}
यदि a, b ∈ Z, तो a - b ∈ Z
=> पूर्णांकों का प्रत्येक क्रमित युग्म R में समाहित है।
R ={(a, b) : a, b ∈ Z}
तो, R का परिसर = R का प्रांत = Z.
APPEARS IN
संबंधित प्रश्न
मान लीजिए A= {1, 2, 3, ……. 14}, R = {(x, y): 3x – y = 0, जहाँ x, Y ∈ A) द्वारा A से A का एक संबंध R लिखिए। इसके प्रांत, सहप्रांत और परिसर लिखिए।
दी हुई आकृति समुच्चय P से Q का एक संबंध दर्शाती है।
इस संबंध को
- समुच्चय निर्माण रूप में
- रोस्टर रूप में लिखिए।
इसके प्रांत व परिसर क्या हैं?
R = {(x, x + 5) : x ∈ {0, 1, 2, 3, 4, 5}} द्वारा परिभाषित संबंध R के प्रांत और परिसर ज्ञात कीजिए।
मान लीजिए कि A = {x, y, z} और B = {1, 2}, A से B के संबंधों की संख्या ज्ञात कीजिए।
दिया हुआ है, A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A} तो उन क्रमित युग्मों को ज्ञात कीजिए, जो निम्नलिखित प्रतिबंध को संतुष्ट करता हैं: x + y = 5
यदि R2 = {(x, y) ∣ x और y पूर्णांक हैं और x2 + y2 = 64} एक संबंध है, तो R2 ज्ञात कीजिए (रोस्टर रूप में लिखिए)।
यदि R3 = {(x, ∣x∣) ∣ x एक वास्तविक संख्या है} एक संबंध है, तो R3 का प्रांत तथा परिसर ज्ञात कीजिए।
क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:
h = {(4, 6), (3, 9), (−11, 6), (3, 11)}
क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:
g = `n, 1/n | n` एक धन पूर्णांक है
क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:
t = {(x, 3) ∣ x एक वास्तविक संख्या है}
नीचे दिये फलन का प्रांत ज्ञात कीजिए:
f(x) = `1/sqrt(1 - cosx)`
नीचे दिये फलन का प्रांत ज्ञात कीजिए:
f(x) = x|x|
नीचे दिये फलन का प्रांत ज्ञात कीजिए:
f(x) = `(x^3 - x + 3)/(x^2 - 1)`
नीचे दिये फलन का प्रांत ज्ञात कीजिए:
f(x) = `(3x)/(2x - 8)`
नीचे दिये फलन का परिसर ज्ञात कीजिए:
f(x) = `3/(2 - x^2)`
फलन f(x) = `1/sqrt(x−5)` का प्रांत तथा परिसर ज्ञात कीजिए।
मान लीजिए कि n(A) = m, और n(B) = n, तो A से B में परिभाषित किये जा सकने वाले अरिक्त संबंधों की कुल संख्या ______
f(x) = `1/(1 - 2cosx)` का परिसर ______ है।
f(x) = `sqrt(4 - x) + 1/sqrt(x^2 - 1)` द्वारा परिभाषित फलन f का प्रांत ______ है।
R = {(a, b) : a, b ∈ N तथा a = b2} द्वारा परिभाषित N से N में, एक संबंध R है। क्या निम्नलिखित कथन सत्य है।
(a,b) ∈ R, (b, c) ∈ R का तात्पर्य है कि (a, c) ∈ R?
दशा में अपने उत्तर का औचित्य भी बताइए।
मान लीजिए A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} और f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}, क्या निम्नलिखित कथन सत्य है?
f, A से B में एक फलन है।
दशा में अपने उत्तर का औचित्य बताइए।