मराठी

R = {(a, b) : a, b ∈ N तथा a = b2} द्वारा परिभाषित N से N में, एक संबंध R है। क्या निम्नलिखित कथन सत्य है। (a,b) ∈ R, (b, c) ∈ R का तात्पर्य है कि (a, c) ∈ R? दशा में अपने उत्तर का औचित्य भी बताइए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

R = {(a, b) : a, b ∈ N तथा a = b2} द्वारा परिभाषित N से N में, एक संबंध R है। क्या निम्नलिखित कथन सत्य है।

(a,b) ∈ R, (b, c) ∈ R का तात्पर्य है कि (a, c) ∈ R?

दशा में अपने उत्तर का औचित्य भी बताइए।

पर्याय

  • सत्य

  • असत्य

MCQ
चूक किंवा बरोबर

उत्तर

यह कथन गलत है।

स्पष्टीकरण:

दिया गया है: R = [(a, b) : a, b ∈ N और a = b2]

(a, b) ∈ R और (b, c) ∈ R ⇒ (a, c) ∈ R

∵ 16 = 42 और 4 = 22

∴ (16, 4) ∈ R और (4, 2) ∈ R

यहाँ,
(16, 2) ∉ R

(a, b) ∈ R और (b, c) ∈ R लेकिन (a, c) ∉ R.

shaalaa.com
संबंध
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?

संबंधित प्रश्‍न

मान लीजिए A= {1, 2, 3, ……. 14}, R = {(x, y): 3x – y = 0, जहाँ x, Y ∈ A) द्वारा A से A का एक संबंध R लिखिए। इसके प्रांत, सहप्रांत और परिसर लिखिए।


प्राकृत संख्याओं के समुच्चय पर R = {x, y) : y = x + 5, x संख्या 4 से कम, एक प्राकृत संख्या है, x,y ∈ N} द्वारा एक संबंध R परिभाषित कीजिए। इस संबंध को रोस्टर रूप में इसके प्रांत और परिसर लिखिए।


A = {1, 2, 3, 5} और B = {4, 6, 9}, A से B में एक सम्बन्ध R = {x, y} : x और y का

अंतर विषम है, x ∈ A, y ∈ B} द्वारा परिभाषित कीजिए। R को रोस्टर रूप में लिखिए।


मान लीजिए कि A= {1, 2, 3, 4, 6) मान लीजिए कि R, A पर {(a, b) : a, b ϵ A, संख्या a संख्या b को यथावथ विभाजित करती है} द्वारा परिभाषित एक संबंध है।

  1. R को रोस्टर रूप में लिखिए।
  2. R का प्रांत ज्ञात कीजिए।
  3. R का परिसर ज्ञात कीजिए।

R = {(x, x + 5) : x ∈ {0, 1, 2, 3, 4, 5}} द्वारा परिभाषित संबंध R के प्रांत और परिसर ज्ञात कीजिए।


संबंध R = {(x, x3) : x संख्या 10 से कम एक अभाज्य संख्या है} को रोस्टर रूप में लिखिए।


मान लीजिए कि R, Z पर, R = {(a, b) : a, b ϵ z, a – b एक पूर्णांक है}, द्वारा परिभाषित एक संबंध है। R के प्रांत व परिसर ज्ञात कीजिए।


संबंध f, \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\] द्वारा परिभाषित है।

संबंध g, \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\] द्वारा परिभाषित है।

दर्शाइए कि क्यों f एक फलन है और g फलन नहीं है।


मान लीजिए कि A तथा B कोई ऐसे दो समुच्चय हैं कि n(B) = p, n(A) = q, तो समुच्चयों f : A → B कुल संख्या ______ है।


दिया हुआ है, A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A} तो उन क्रमित युग्मों को ज्ञात कीजिए, जो निम्नलिखित प्रतिबंध को संतुष्ट करता हैं: x + y = 5


दिया हुआ है, A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A} तो उन क्रमित युग्मों को ज्ञात कीजिए, जो निम्नलिखित प्रतिबंध को संतुष्ट करता हैं: x + y < 5


यदि R1 = {(x, y) ∣ y = 2x + 7, जहाँ x ∈ R और −5 ≤ x ≤ 5} एक संबंध है तो R1 का प्रांत तथा परिसर ज्ञात कीजिए।


यदि R2 = {(x, y) ∣ x और y पूर्णांक हैं और x2 + y2 = 64} एक संबंध है, तो R2 ज्ञात कीजिए (रोस्टर रूप में लिखिए)।


यदि R3 = {(x, ∣x∣) ∣ x एक वास्तविक संख्या है} एक संबंध है, तो R3 का प्रांत तथा परिसर ज्ञात कीजिए।


क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:

g = `n, 1/n | n` एक धन पूर्णांक है


क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:

s = {(n, n2) ∣ n एक धन पूर्णांक है}


क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:

t = {(x, 3) ∣ x एक वास्तविक संख्या है}


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = `1/sqrt(1 - cosx)`


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = `1/sqrt(x + |x|)`


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = `(x^3 - x +  3)/(x^2 - 1)`


नीचे दिये फलन का परिसर ज्ञात कीजिए:

f(x) = `3/(2  - x^2)`


मान लीजिए कि n(A) = m, और n(B) = n, तो A से B में परिभाषित किये जा सकने वाले अरिक्त संबंधों की कुल संख्या ______


f(x) = `1/(1 - 2cosx)` का परिसर ______ है।


यदि f(x) = ax + b, जहाँ a और b पूर्णांक हैं। यदि f(-1) = -5 और f(3) = 3, तो ______


f(x) = 2 − ∣x − 5∣ द्वारा प्रदत्त फलन f का प्रांत तथा परिसर निम्नलिखित प्रकार है,

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×