Advertisements
Advertisements
Question
नीचे दिये फलन का प्रांत ज्ञात कीजिए:
f(x) = `(x^3 - x + 3)/(x^2 - 1)`
Solution
यहाँ,
फलन को (x − 1) (x + 1) ≠ 0 के लिए परिभाषित किया गया है।
इसलिए,
⇒ x ≠ 1, x ≠ −1
फलन का प्रांत है R − {−1, 1}।
APPEARS IN
RELATED QUESTIONS
मान लीजिए A= {1, 2, 3, ……. 14}, R = {(x, y): 3x – y = 0, जहाँ x, Y ∈ A) द्वारा A से A का एक संबंध R लिखिए। इसके प्रांत, सहप्रांत और परिसर लिखिए।
प्राकृत संख्याओं के समुच्चय पर R = {x, y) : y = x + 5, x संख्या 4 से कम, एक प्राकृत संख्या है, x,y ∈ N} द्वारा एक संबंध R परिभाषित कीजिए। इस संबंध को रोस्टर रूप में इसके प्रांत और परिसर लिखिए।
A = {1, 2, 3, 5} और B = {4, 6, 9}, A से B में एक सम्बन्ध R = {x, y} : x और y का
अंतर विषम है, x ∈ A, y ∈ B} द्वारा परिभाषित कीजिए। R को रोस्टर रूप में लिखिए।
R = {(x, x + 5) : x ∈ {0, 1, 2, 3, 4, 5}} द्वारा परिभाषित संबंध R के प्रांत और परिसर ज्ञात कीजिए।
संबंध R = {(x, x3) : x संख्या 10 से कम एक अभाज्य संख्या है} को रोस्टर रूप में लिखिए।
मान लीजिए कि R, Z पर, R = {(a, b) : a, b ϵ z, a – b एक पूर्णांक है}, द्वारा परिभाषित एक संबंध है। R के प्रांत व परिसर ज्ञात कीजिए।
संबंध f, \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\] द्वारा परिभाषित है।
संबंध g, \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\] द्वारा परिभाषित है।
दर्शाइए कि क्यों f एक फलन है और g फलन नहीं है।
मान लीजिए A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} और f= {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}, क्या निम्नलिखित कथन सत्य है?
f, A से B में एक संबंध है।
दशा में अपने उत्तर का औचित्य बताइए।
मान लीजिए कि A तथा B कोई ऐसे दो समुच्चय हैं कि n(B) = p, n(A) = q, तो समुच्चयों f : A → B कुल संख्या ______ है।
यदि R3 = {(x, ∣x∣) ∣ x एक वास्तविक संख्या है} एक संबंध है, तो R3 का प्रांत तथा परिसर ज्ञात कीजिए।
क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:
h = {(4, 6), (3, 9), (−11, 6), (3, 11)}
क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:
s = {(n, n2) ∣ n एक धन पूर्णांक है}
क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:
t = {(x, 3) ∣ x एक वास्तविक संख्या है}
नीचे दिये फलन का प्रांत ज्ञात कीजिए:
f(x) = `1/sqrt(x + |x|)`
नीचे दिये फलन का प्रांत ज्ञात कीजिए:
f(x) = x|x|
फलन f(x) = `1/sqrt(x−5)` का प्रांत तथा परिसर ज्ञात कीजिए।
मान लीजिए कि n(A) = m, और n(B) = n, तो A से B में परिभाषित किये जा सकने वाले अरिक्त संबंधों की कुल संख्या ______
`sqrt(a^2 - x^2)` (a > 0) का प्रांत है।
यदि f(x) = ax + b, जहाँ a और b पूर्णांक हैं। यदि f(-1) = -5 और f(3) = 3, तो ______
f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` द्वारा प्रदत्त (given) फलन f का प्रांत ______
R = {(a, b) : a, b ∈ N तथा a = b2} द्वारा परिभाषित N से N में, एक संबंध R है। क्या निम्नलिखित कथन सत्य है।
(a,b) ∈ R, (b, c) ∈ R का तात्पर्य है कि (a, c) ∈ R?
दशा में अपने उत्तर का औचित्य भी बताइए।