Advertisements
Advertisements
प्रश्न
विकल्प
प्रांत = R+, परिसर = (–∞, 1]
प्रांत = R, परिसर = (–∞, 2]
प्रांत = R, परिसर = (–∞, 2)
प्रांत = R+, परिसर = (–∞, 2]
उत्तर
प्रांत = R, परिसर = (–∞, 2]
स्पष्टीकरण:
ध्यान दें कि यह दिया गया है, f(x) = 2 − ∣x − 5∣,
समझें कि f(x) को परिभाषित किया गया है x ∈ R
इसलिए, f(x) का प्रांत है f(x) = R
परिसर की गणना करें।
∣x − 5∣ ≥ 0 ⇒ −∣x − 5∣ ≤ 0
⇒ 2 − ∣x − 5∣ ≤ 2
⇒ f(x) ≤ 2
इसलिए, f(x) का परिसर है f(x) = (−∞, 2]
APPEARS IN
संबंधित प्रश्न
प्राकृत संख्याओं के समुच्चय पर R = {x, y) : y = x + 5, x संख्या 4 से कम, एक प्राकृत संख्या है, x,y ∈ N} द्वारा एक संबंध R परिभाषित कीजिए। इस संबंध को रोस्टर रूप में इसके प्रांत और परिसर लिखिए।
A = {1, 2, 3, 5} और B = {4, 6, 9}, A से B में एक सम्बन्ध R = {x, y} : x और y का
अंतर विषम है, x ∈ A, y ∈ B} द्वारा परिभाषित कीजिए। R को रोस्टर रूप में लिखिए।
दी हुई आकृति समुच्चय P से Q का एक संबंध दर्शाती है।
इस संबंध को
- समुच्चय निर्माण रूप में
- रोस्टर रूप में लिखिए।
इसके प्रांत व परिसर क्या हैं?
R = {(x, x + 5) : x ∈ {0, 1, 2, 3, 4, 5}} द्वारा परिभाषित संबंध R के प्रांत और परिसर ज्ञात कीजिए।
संबंध R = {(x, x3) : x संख्या 10 से कम एक अभाज्य संख्या है} को रोस्टर रूप में लिखिए।
मान लीजिए कि A = {x, y, z} और B = {1, 2}, A से B के संबंधों की संख्या ज्ञात कीजिए।
मान लीजिए कि R, Z पर, R = {(a, b) : a, b ϵ z, a – b एक पूर्णांक है}, द्वारा परिभाषित एक संबंध है। R के प्रांत व परिसर ज्ञात कीजिए।
संबंध f, \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\] द्वारा परिभाषित है।
संबंध g, \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\] द्वारा परिभाषित है।
दर्शाइए कि क्यों f एक फलन है और g फलन नहीं है।
मान लीजिए A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} और f= {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}, क्या निम्नलिखित कथन सत्य है?
f, A से B में एक संबंध है।
दशा में अपने उत्तर का औचित्य बताइए।
मान लीजिए कि A तथा B कोई ऐसे दो समुच्चय हैं कि n(B) = p, n(A) = q, तो समुच्चयों f : A → B कुल संख्या ______ है।
दिया हुआ है, A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A} तो उन क्रमित युग्मों को ज्ञात कीजिए, जो निम्नलिखित प्रतिबंध को संतुष्ट करता हैं: x + y < 5
यदि R = {(x, y) : x, y ∈ W, x2 + y2 = 25} प्रदत्त है। R का प्रांत तथा परिसर ज्ञात कीजिए।
यदि R2 = {(x, y) ∣ x और y पूर्णांक हैं और x2 + y2 = 64} एक संबंध है, तो R2 ज्ञात कीजिए (रोस्टर रूप में लिखिए)।
क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:
s = {(n, n2) ∣ n एक धन पूर्णांक है}
नीचे दिये फलन का प्रांत ज्ञात कीजिए:
f(x) = x|x|
नीचे दिये फलन का प्रांत ज्ञात कीजिए:
f(x) = `(x^3 - x + 3)/(x^2 - 1)`
नीचे दिये फलन का परिसर ज्ञात कीजिए:
f(x) = `3/(2 - x^2)`
मान लीजिए कि n(A) = m, और n(B) = n, तो A से B में परिभाषित किये जा सकने वाले अरिक्त संबंधों की कुल संख्या ______
f(x) = `sqrt(4 - x) + 1/sqrt(x^2 - 1)` द्वारा परिभाषित फलन f का प्रांत ______ है।
f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` द्वारा प्रदत्त (given) फलन f का प्रांत ______
बताइए कि प्रश्न संख्या में दिये कथन सत्य हैं या असत्य है:
यदि (x − 2, y + 5) = `(−2, 1/3)`, तो x = 4, y = `(−14)/3`
R = {(a, b) : a, b ∈ N तथा a = b2} द्वारा परिभाषित N से N में, एक संबंध R है। क्या निम्नलिखित कथन सत्य है।
(a,b) ∈ R, (b, c) ∈ R का तात्पर्य है कि (a, c) ∈ R?
दशा में अपने उत्तर का औचित्य भी बताइए।
मान लीजिए A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} और f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}, क्या निम्नलिखित कथन सत्य है?
f, A से B में एक फलन है।
दशा में अपने उत्तर का औचित्य बताइए।