हिंदी

मान लीजिए A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} और f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}, क्या निम्नलिखित कथन सत्य है? f, A से B में एक फलन है। दशा में अपने उत्तर का औचित्य बताइए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

मान लीजिए A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} और f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}, क्या निम्नलिखित कथन सत्य है?

f, A से B में एक फलन है।

दशा में अपने उत्तर का औचित्य बताइए।

विकल्प

  • सत्य

  • असत्य

MCQ
सत्य या असत्य

उत्तर

यह कथन असत्य है।

स्पष्टीकरण:

क्योंकि (2, 9), (2, 11) ∈ f यानी, f में एक ही पहले अवयव के साथ दो क्रमित युग्म किए गए हैं। इसलिए f, A से B तक एक फलन नहीं है।

shaalaa.com
संबंध
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?

संबंधित प्रश्न

मान लीजिए A= {1, 2, 3, ……. 14}, R = {(x, y): 3x – y = 0, जहाँ x, Y ∈ A) द्वारा A से A का एक संबंध R लिखिए। इसके प्रांत, सहप्रांत और परिसर लिखिए।


A = {1, 2, 3, 5} और B = {4, 6, 9}, A से B में एक सम्बन्ध R = {x, y} : x और y का

अंतर विषम है, x ∈ A, y ∈ B} द्वारा परिभाषित कीजिए। R को रोस्टर रूप में लिखिए।


दी हुई आकृति समुच्चय P से Q का एक संबंध दर्शाती है।
इस संबंध को

  1. समुच्चय निर्माण रूप में
  2. रोस्टर रूप में लिखिए।

इसके प्रांत व परिसर क्या हैं?


संबंध R = {(x, x3) : x संख्या 10 से कम एक अभाज्य संख्या है} को रोस्टर रूप में लिखिए।


मान लीजिए कि A = {x, y, z} और B = {1, 2}, A से B के संबंधों की संख्या ज्ञात कीजिए।


मान लीजिए कि R, Z पर, R = {(a, b) : a, b ϵ z, a – b एक पूर्णांक है}, द्वारा परिभाषित एक संबंध है। R के प्रांत व परिसर ज्ञात कीजिए।


मान लीजिए कि A तथा B कोई ऐसे दो समुच्चय हैं कि n(B) = p, n(A) = q, तो समुच्चयों f : A → B कुल संख्या ______ है।


दिया हुआ है, A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A} तो उन क्रमित युग्मों को ज्ञात कीजिए, जो निम्नलिखित प्रतिबंध को संतुष्ट करता हैं: x + y = 5


दिया हुआ है, A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A} तो उन क्रमित युग्मों को ज्ञात कीजिए, जो निम्नलिखित प्रतिबंध को संतुष्ट करता हैं: x + y < 5


दिया हुआ है, A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A} तो उन क्रमित युग्मों को ज्ञात कीजिए, जो निम्नलिखित प्रतिबंध को संतुष्ट करता हैं: x + y > 8


यदि R1 = {(x, y) ∣ y = 2x + 7, जहाँ x ∈ R और −5 ≤ x ≤ 5} एक संबंध है तो R1 का प्रांत तथा परिसर ज्ञात कीजिए।


क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:

g = `n, 1/n | n` एक धन पूर्णांक है


क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:

s = {(n, n2) ∣ n एक धन पूर्णांक है}


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = `1/sqrt(1 - cosx)`


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = x|x|


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = `(x^3 - x +  3)/(x^2 - 1)`


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = `(3x)/(2x - 8)`


फलन f(x) = `1/sqrt(x−5)` का प्रांत तथा परिसर ज्ञात कीजिए।


मान लीजिए कि n(A) = m, और n(B) = n, तो A से B में परिभाषित किये जा सकने वाले अरिक्त संबंधों की कुल संख्या ______


`sqrt(a^2 - x^2)` (a > 0) का प्रांत है।


बताइए कि प्रश्न संख्या में दिये कथन सत्य हैं या असत्य है:

यदि (x − 2, y + 5) = `(−2, 1/3)`, तो x = 4, y = `(−14)/3`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×