हिंदी

क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए: g = n,1n∣n एक धन पूर्णांक है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:

g = `n, 1/n | n` एक धन पूर्णांक है

योग

उत्तर

संबंध का मूल्यांकन करें।

यहां, हम देखते हैं कि प्रांत के हर तत्व के लिए एक अद्वितीय छवि है।

दिया हुआ संबंध का फलन है। 

shaalaa.com
संबंध
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: संबंध एवं फलन - प्रश्नावली [पृष्ठ २८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
अध्याय 2 संबंध एवं फलन
प्रश्नावली | Q 10. (iii) | पृष्ठ २८

संबंधित प्रश्न

मान लीजिए A= {1, 2, 3, ……. 14}, R = {(x, y): 3x – y = 0, जहाँ x, Y ∈ A) द्वारा A से A का एक संबंध R लिखिए। इसके प्रांत, सहप्रांत और परिसर लिखिए।


प्राकृत संख्याओं के समुच्चय पर R = {x, y) : y = x + 5, x संख्या 4 से कम, एक प्राकृत संख्या है, x,y ∈ N} द्वारा एक संबंध R परिभाषित कीजिए। इस संबंध को रोस्टर रूप में इसके प्रांत और परिसर लिखिए।


मान लीजिए कि A= {1, 2, 3, 4, 6) मान लीजिए कि R, A पर {(a, b) : a, b ϵ A, संख्या a संख्या b को यथावथ विभाजित करती है} द्वारा परिभाषित एक संबंध है।

  1. R को रोस्टर रूप में लिखिए।
  2. R का प्रांत ज्ञात कीजिए।
  3. R का परिसर ज्ञात कीजिए।

R = {(x, x + 5) : x ∈ {0, 1, 2, 3, 4, 5}} द्वारा परिभाषित संबंध R के प्रांत और परिसर ज्ञात कीजिए।


संबंध R = {(x, x3) : x संख्या 10 से कम एक अभाज्य संख्या है} को रोस्टर रूप में लिखिए।


मान लीजिए कि R, Z पर, R = {(a, b) : a, b ϵ z, a – b एक पूर्णांक है}, द्वारा परिभाषित एक संबंध है। R के प्रांत व परिसर ज्ञात कीजिए।


संबंध f, \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\] द्वारा परिभाषित है।

संबंध g, \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\] द्वारा परिभाषित है।

दर्शाइए कि क्यों f एक फलन है और g फलन नहीं है।


मान लीजिए A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} और f= {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}, क्या निम्नलिखित कथन सत्य है?

f, A से B में एक संबंध है।

दशा में अपने उत्तर का औचित्य बताइए।


मान लीजिए कि A तथा B कोई ऐसे दो समुच्चय हैं कि n(B) = p, n(A) = q, तो समुच्चयों f : A → B कुल संख्या ______ है।


दिया हुआ है, A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A} तो उन क्रमित युग्मों को ज्ञात कीजिए, जो निम्नलिखित प्रतिबंध को संतुष्ट करता हैं: x + y = 5


दिया हुआ है, A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A} तो उन क्रमित युग्मों को ज्ञात कीजिए, जो निम्नलिखित प्रतिबंध को संतुष्ट करता हैं: x + y < 5


यदि R = {(x, y) : x, y ∈ W, x2 + y2 = 25} प्रदत्त है। R का प्रांत तथा परिसर ज्ञात कीजिए।


यदि R1 = {(x, y) ∣ y = 2x + 7, जहाँ x ∈ R और −5 ≤ x ≤ 5} एक संबंध है तो R1 का प्रांत तथा परिसर ज्ञात कीजिए।


क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:

h = {(4, 6), (3, 9), (−11, 6), (3, 11)}


क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:

s = {(n, n2) ∣ n एक धन पूर्णांक है}


क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:

t = {(x, 3) ∣ x एक वास्तविक संख्या है}


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = `1/sqrt(1 - cosx)`


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = `1/sqrt(x + |x|)`


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = x|x|


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = `(x^3 - x +  3)/(x^2 - 1)`


मान लीजिए कि n(A) = m, और n(B) = n, तो A से B में परिभाषित किये जा सकने वाले अरिक्त संबंधों की कुल संख्या ______


`sqrt(a^2 - x^2)` (a > 0) का प्रांत है।


f(x) = `sqrt(4 - x) + 1/sqrt(x^2 - 1)` द्वारा परिभाषित फलन f का प्रांत ______ है।


बताइए कि प्रश्न संख्या में दिये कथन सत्य हैं या असत्य है:

यदि (x − 2, y + 5) = `(−2, 1/3)`, तो x = 4, y = `(−14)/3`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×