हिंदी

नीचे दिये फलन का प्रांत ज्ञात कीजिए: f(x) = 11-cosx - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = `1/sqrt(1 - cosx)`

योग

उत्तर

फलन के प्रांत  की गणना करें।

यहाँ

​⇒ −1 ≤ cosx ≤ 1
⇒ 1 ≥ −cosx ≥ − 1​

आगे हल करें,

​⇒ 1 + 1 ≥ 1 − cosx ≥ −1 + 1
⇒ 2 ≥ 1 − cosx ≥ 0
⇒ 0 ≤ 1 − cosx ≤ 2​

फलन का वास्तविक मूल्य है

​⇒ 1 − cosx ≠ 0
⇒ cosx ≠ 1
⇒ x ≠ 2nπ ∀ n ∈ Z
⇒ R − {2nπ ∀ n ∈ Z}​
फलन का प्रांत है R − {2nπ ∀ n ∈ Z}।
shaalaa.com
संबंध
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: संबंध एवं फलन - प्रश्नावली [पृष्ठ २९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
अध्याय 2 संबंध एवं फलन
प्रश्नावली | Q 17. (i) | पृष्ठ २९

संबंधित प्रश्न

मान लीजिए A= {1, 2, 3, ……. 14}, R = {(x, y): 3x – y = 0, जहाँ x, Y ∈ A) द्वारा A से A का एक संबंध R लिखिए। इसके प्रांत, सहप्रांत और परिसर लिखिए।


दी हुई आकृति समुच्चय P से Q का एक संबंध दर्शाती है।
इस संबंध को

  1. समुच्चय निर्माण रूप में
  2. रोस्टर रूप में लिखिए।

इसके प्रांत व परिसर क्या हैं?


मान लीजिए कि A= {1, 2, 3, 4, 6) मान लीजिए कि R, A पर {(a, b) : a, b ϵ A, संख्या a संख्या b को यथावथ विभाजित करती है} द्वारा परिभाषित एक संबंध है।

  1. R को रोस्टर रूप में लिखिए।
  2. R का प्रांत ज्ञात कीजिए।
  3. R का परिसर ज्ञात कीजिए।

R = {(x, x + 5) : x ∈ {0, 1, 2, 3, 4, 5}} द्वारा परिभाषित संबंध R के प्रांत और परिसर ज्ञात कीजिए।


संबंध R = {(x, x3) : x संख्या 10 से कम एक अभाज्य संख्या है} को रोस्टर रूप में लिखिए।


मान लीजिए कि A = {x, y, z} और B = {1, 2}, A से B के संबंधों की संख्या ज्ञात कीजिए।


मान लीजिए कि R, Z पर, R = {(a, b) : a, b ϵ z, a – b एक पूर्णांक है}, द्वारा परिभाषित एक संबंध है। R के प्रांत व परिसर ज्ञात कीजिए।


संबंध f, \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\] द्वारा परिभाषित है।

संबंध g, \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\] द्वारा परिभाषित है।

दर्शाइए कि क्यों f एक फलन है और g फलन नहीं है।


मान लीजिए कि A तथा B कोई ऐसे दो समुच्चय हैं कि n(B) = p, n(A) = q, तो समुच्चयों f : A → B कुल संख्या ______ है।


दिया हुआ है, A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A} तो उन क्रमित युग्मों को ज्ञात कीजिए, जो निम्नलिखित प्रतिबंध को संतुष्ट करता हैं: x + y = 5


दिया हुआ है, A = {1, 2, 3, 4, 5}, S = {(x, y) : x ∈ A, y ∈ A} तो उन क्रमित युग्मों को ज्ञात कीजिए, जो निम्नलिखित प्रतिबंध को संतुष्ट करता हैं: x + y < 5


यदि R2 = {(x, y) ∣ x और y पूर्णांक हैं और x2 + y2 = 64} एक संबंध है, तो R2 ज्ञात कीजिए (रोस्टर रूप में लिखिए)।


क्या नीचे दिये गये संबंध फलन हैं? अपने उत्तर का औचित्य भी बताइए:

h = {(4, 6), (3, 9), (−11, 6), (3, 11)}


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = x|x|


नीचे दिये फलन का प्रांत ज्ञात कीजिए:

f(x) = `(x^3 - x +  3)/(x^2 - 1)`


फलन f(x) = `1/sqrt(x−5)` का प्रांत तथा परिसर ज्ञात कीजिए।


मान लीजिए कि n(A) = m, और n(B) = n, तो A से B में परिभाषित किये जा सकने वाले अरिक्त संबंधों की कुल संख्या ______


`sqrt(a^2 - x^2)` (a > 0) का प्रांत है।


यदि f(x) = ax + b, जहाँ a और b पूर्णांक हैं। यदि f(-1) = -5 और f(3) = 3, तो ______


f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` द्वारा प्रदत्त (given) फलन f का प्रांत ______


f(x) = 2 − ∣x − 5∣ द्वारा प्रदत्त फलन f का प्रांत तथा परिसर निम्नलिखित प्रकार है,

R = {(a, b) : a, b ∈ N तथा a = b2} द्वारा परिभाषित N से N में, एक संबंध R है। क्या निम्नलिखित कथन सत्य है।

(a,b) ∈ R, (b, c) ∈ R का तात्पर्य है कि (a, c) ∈ R?

दशा में अपने उत्तर का औचित्य भी बताइए।


मान लीजिए A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} और f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}, क्या निम्नलिखित कथन सत्य है?

f, A से B में एक फलन है।

दशा में अपने उत्तर का औचित्य बताइए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×