Advertisements
Advertisements
Question
What are the rotational equivalents for the physical quantities, (i) mass and (ii) force?
Solution
The rotational equivalents for (i) mass and (ii) force are a moment of inertia and torque respectively.
APPEARS IN
RELATED QUESTIONS
A thin walled hollow cylinder is rolling down an incline, without slipping. At any instant, without slipping. At any instant, the ratio "Rotational K.E.: Translational K.E.: Total K.E." is ______.
Answer in brief:
Why are curved roads banked?
Do we need a banked road for a two-wheeler? Explain.
While driving along an unbanked circular road, a two-wheeler rider has to lean with the vertical. Why is it so? With what angle the rider has to lean? Derive the relevant expression. Why such a leaning is not necessary for a four wheeler?
Somehow, an ant is stuck to the rim of a bicycle wheel of diameter 1 m. While the bicycle is on a central stand, the wheel is set into rotation and it attains the frequency of 2 rev/s in 10 seconds, with uniform angular acceleration. Calculate:
- The number of revolutions completed by the ant in these 10 seconds.
- Time is taken by it for first complete revolution and the last complete revolution.
Answer in Brief:
A flywheel used to prepare earthenware pots is set into rotation at 100 rpm. It is in the form of a disc of mass 10 kg and a radius 0.4 m. A lump of clay (to be taken equivalent to a particle) of mass 1.6 kg falls on it and adheres to it at a certain distance x from the center. Calculate x if the wheel now rotates at 80 rpm.
A hollow sphere has a radius of 6.4 m. what is the minimum velocity required by a motorcyclist at the bottom to complete the circle.
Derive an expression for maximum safety speed with which a vehicle should move along a curved horizontal road. State the significance of it.
Derive an expression for the kinetic energy of a rotating body with uniform angular velocity.
A railway track goes around a curve having a radius of curvature of 1 km. The distance between the rails is 1 m. Find the elevation of the outer rail above the inner rail so that there is no side pressure against the rails when a train goes around the curve at 36 km/hr.