Advertisements
Advertisements
Question
What is the difference between Assignment Problem and Transportation Problem?
Solution
The assignment problem is a special case of the transportation problem.
The differences are given below:
Transportation Problem | Assignment Problem |
1. This is about reducing the cost of transportation merchandise | 1. This is about assigning finite sources to finite destinations where only one destination is allotted for one source with a minimum cost |
2. Number of sources and number of demand need not be equal | 2. Number of sources and the number of destinations must be equal |
3. If total demand and total supply are not equal then the problem is said to be unbalanced. | 3. If the number of rows is not equal to the number of columns then problems are unbalanced. |
4. It requires 2 stages to solve: Getting initial basic feasible solution, by NWC, LCM, VAM and optimal solution by MODI method | 4. It has only one stage. Hungarian method is sufficient for obtaining an optimal solution |
APPEARS IN
RELATED QUESTIONS
Solve the following maximal assignment problem :
Branch Manager | Monthly Business ( Rs. lakh) | |||
A | B | C | D | |
P | 11 | 11 | 9 | 9 |
Q | 13 | 16 | 11 | 10 |
R | 12 | 17 | 13 | 8 |
S | 16 | 14 | 16 | 12 |
A job production unit has four jobs A, B, C, D which can be manufactured on each of the four machines P, Q, R and S. The processing cost of each job for each machine is given in the following table:
Jobs | Machines (Processing Cost in ₹) |
|||
P | Q | R | S | |
A | 31 | 25 | 33 | 29 |
B | 25 | 24 | 23 | 21 |
C | 19 | 21 | 23 | 24 |
D | 38 | 36 | 34 | 40 |
Find the optimal assignment to minimize the total processing cost.
The assignment problem is said to be balanced if ______.
Fill in the blank :
An _______ is a special type of linear programming problem.
State whether the following is True or False :
In assignment problem, each facility is capable of performing each task.
State whether the following is True or False :
It is not necessary to express an assignment problem into n x n matrix.
Three jobs A, B and C one to be assigned to three machines U, V and W. The processing cost for each job machine combination is shown in the matrix given below. Determine the allocation that minimizes the overall processing cost.
Machine | ||||
U | V | W | ||
Jobs | A | 17 | 25 | 31 |
B | 10 | 25 | 16 | |
C | 12 | 14 | 11 |
(cost is in ₹ per unit)
A natural truck-rental service has a surplus of one truck in each of the cities 1, 2, 3, 4, 5 and 6 and a deficit of one truck in each of the cities 7, 8, 9, 10, 11 and 12. The distance(in kilometers) between the cities with a surplus and the cities with a deficit are displayed below:
To | |||||||
7 | 8 | 9 | 10 | 11 | 12 | ||
From | 1 | 31 | 62 | 29 | 42 | 15 | 41 |
2 | 12 | 19 | 39 | 55 | 71 | 40 | |
3 | 17 | 29 | 50 | 41 | 22 | 22 | |
4 | 35 | 40 | 38 | 42 | 27 | 33 | |
5 | 19 | 30 | 29 | 16 | 20 | 33 | |
6 | 72 | 30 | 30 | 50 | 41 | 20 |
How should the truck be dispersed so as to minimize the total distance travelled?
A job production unit has four jobs P, Q, R, and S which can be manufactured on each of the four machines I, II, III, and IV. The processing cost of each job for each machine is given in the following table:
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 31 | 25 | 33 | 29 |
Q | 25 | 24 | 23 | 21 |
R | 19 | 21 | 23 | 24 |
S | 38 | 36 | 34 | 40 |
Find the optimal assignment to minimize the total processing cost.
A job production unit has four jobs P, Q, R, S which can be manufactured on each of the four machines I, II, III and IV. The processing cost of each job for each machine is given in the following table :
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 31 | 25 | 33 | 29 |
Q | 25 | 24 | 23 | 21 |
R | 19 | 21 | 23 | 24 |
S | 38 | 36 | 34 | 40 |
Complete the following activity to find the optimal assignment to minimize the total processing cost.
Solution:
Step 1: Subtract the smallest element in each row from every element of it. New assignment matrix is obtained as follows :
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 6 | 0 | 8 | 4 |
Q | 4 | 3 | 2 | 0 |
R | 0 | 2 | 4 | 5 |
S | 4 | 2 | 0 | 6 |
Step 2: Subtract the smallest element in each column from every element of it. New assignment matrix is obtained as above, because each column in it contains one zero.
Step 3: Draw minimum number of vertical and horizontal lines to cover all zeros:
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 6 | 0 | 8 | 4 |
Q | 4 | 3 | 2 | 0 |
R | 0 | 2 | 4 | 5 |
S | 4 | 2 | 0 | 6 |
Step 4: From step 3, as the minimum number of straight lines required to cover all zeros in the assignment matrix equals the number of rows/columns. Optimal solution has reached.
Examine the rows one by one starting with the first row with exactly one zero is found. Mark the zero by enclosing it in (`square`), indicating assignment of the job. Cross all the zeros in the same column. This step is shown in the following table :
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 6 | 0 | 8 | 4 |
Q | 4 | 3 | 2 | 0 |
R | 0 | 2 | 4 | 5 |
S | 4 | 2 | 0 | 6 |
Step 5: It is observed that all the zeros are assigned and each row and each column contains exactly one assignment. Hence, the optimal (minimum) assignment schedule is :
Job | Machine | Min.cost |
P | II | `square` |
Q | `square` | 21 |
R | I | `square` |
S | III | 34 |
Hence, total (minimum) processing cost = 25 + 21 + 19 + 34 = ₹`square`