English
Tamil Nadu Board of Secondary EducationHSC Commerce Class 12

What is the difference between Assignment Problem and Transportation Problem? - Business Mathematics and Statistics

Advertisements
Advertisements

Question

What is the difference between Assignment Problem and Transportation Problem?

Distinguish Between

Solution

The assignment problem is a special case of the transportation problem.

The differences are given below:

Transportation Problem Assignment Problem
1. This is about reducing the cost of transportation merchandise 1. This is about assigning finite sources to finite destinations where only one destination is allotted for one source with a minimum cost
2. Number of sources and number of demand need not be equal 2. Number of sources and the number of destinations must be equal
3. If total demand and total supply are not equal then the problem is said to be unbalanced. 3. If the number of rows is not equal to the number of columns then problems are unbalanced.
4. It requires 2 stages to solve: Getting initial basic feasible solution, by NWC, LCM, VAM and optimal solution by MODI method 4. It has only one stage. Hungarian method is sufficient for obtaining an optimal solution
shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Operations Research - Exercise 10.2 [Page 256]

APPEARS IN

Samacheer Kalvi Business Mathematics and Statistics [English] Class 12 TN Board
Chapter 10 Operations Research
Exercise 10.2 | Q 3 | Page 256

RELATED QUESTIONS

Solve the following maximal assignment problem :

Branch Manager Monthly Business ( Rs. lakh)
A B C D
P 11 11 9 9
Q 13 16 11 10
R 12 17 13 8
S 16 14 16 12

 


A job production unit has four jobs A, B, C, D which can be manufactured on each of the four machines P, Q, R and S. The processing cost of each job for each machine is given in the following table:

Jobs Machines
(Processing Cost in ₹)
P Q R S
A 31 25 33 29
B 25 24 23 21
C 19 21 23 24
D 38 36 34 40

Find the optimal assignment to minimize the total processing cost.


The assignment problem is said to be balanced if ______.


Fill in the blank :

An _______ is a special type of linear programming problem.


State whether the following is True or False :

In assignment problem, each facility is capable of performing each task.


State whether the following is True or False :

It is not necessary to express an assignment problem into n x n matrix.


Three jobs A, B and C one to be assigned to three machines U, V and W. The processing cost for each job machine combination is shown in the matrix given below. Determine the allocation that minimizes the overall processing cost.

    Machine
    U V W
Jobs A 17 25 31
B 10 25 16
C 12 14 11

(cost is in ₹ per unit)


A natural truck-rental service has a surplus of one truck in each of the cities 1, 2, 3, 4, 5 and 6 and a deficit of one truck in each of the cities 7, 8, 9, 10, 11 and 12. The distance(in kilometers) between the cities with a surplus and the cities with a deficit are displayed below:

    To
    7 8 9 10 11 12
From 1 31 62 29 42 15 41
2 12 19 39 55 71 40
3 17 29 50 41 22 22
4 35 40 38 42 27 33
5 19 30 29 16 20 33
6 72 30 30 50 41 20

How should the truck be dispersed so as to minimize the total distance travelled?


A job production unit has four jobs P, Q, R, and S which can be manufactured on each of the four machines I, II, III, and IV. The processing cost of each job for each machine is given in the following table:

Job Machines
(Processing cost in ₹)
I II III IV
P 31 25 33 29
Q 25 24 23 21
R 19 21 23 24
S 38 36 34 40

Find the optimal assignment to minimize the total processing cost.


A job production unit has four jobs P, Q, R, S which can be manufactured on each of the four machines I, II, III and IV. The processing cost of each job for each machine is given in the following table :

Job Machines
(Processing cost in ₹)
I II III IV
P 31 25 33 29
Q 25 24 23 21
R 19 21 23 24
S 38 36 34 40

Complete the following activity to find the optimal assignment to minimize the total processing cost.

Solution:

Step 1: Subtract the smallest element in each row from every element of it. New assignment matrix is obtained as follows :

Job Machines
(Processing cost in ₹)
I II III IV
P 6 0 8 4
Q 4 3 2 0
R 0 2 4 5
S 4 2 0 6

Step 2: Subtract the smallest element in each column from every element of it. New assignment matrix is obtained as above, because each column in it contains one zero.

Step 3: Draw minimum number of vertical and horizontal lines to cover all zeros:

Job Machines
(Processing cost in ₹)
I II III IV
P 6 0 8 4
Q 4 3 2 0
R 0 2 4 5
S 4 2 0 6

Step 4: From step 3, as the minimum number of straight lines required to cover all zeros in the assignment matrix equals the number of rows/columns. Optimal solution has reached.

Examine the rows one by one starting with the first row with exactly one zero is found. Mark the zero by enclosing it in (`square`), indicating assignment of the job. Cross all the zeros in the same column. This step is shown in the following table :

Job Machines
(Processing cost in ₹)
I II III IV
P 6 0 8 4
Q 4 3 2 0
R 0 2 4 5
S 4 2 0 6

Step 5: It is observed that all the zeros are assigned and each row and each column contains exactly one assignment. Hence, the optimal (minimum) assignment schedule is :

Job Machine Min.cost
P II `square`
Q `square` 21
R I `square`
S III 34

Hence, total (minimum) processing cost = 25 + 21 + 19 + 34 = ₹`square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×