Advertisements
Advertisements
Question
What is the significance of the terms - ‘isolated gaseous atom’ and ‘ground state’ while defining the ionization enthalpy and electron gain enthalpy?
Hint: Requirements for comparison purposes.
Solution 1
Ionization enthalpy is the energy required to remove an electron from an isolated gaseous atom in its ground state. Although the atoms are widely separated in the gaseous state, there are some amounts of attractive forces among the atoms. To determine the ionization enthalpy, it is impossible to isolate a single atom. But, the force of attraction can be further reduced by lowering the pressure. For this reason, the term ‘isolated gaseous atom’ is used in the definition of ionization enthalpy.
Ground state of an atom refers to the most stable state of an atom. If an isolated gaseous atom is in its ground state, then less amount energy would be required to remove an electron from it. Therefore, for comparison purposes, ionization enthalpy and electron gain enthalpy must be determined for an ‘isolated gaseous atom’ and its ‘ground state’.
Solution 2
Significance of term ‘isolated gaseous atom’. The atoms in the gaseous state are far separated in the sense that they do not have any mutual attractive and repulsive interactions. These are therefore regarded as isolated atoms. In this state the value of ionization enthalpy and electron gain enthalpy are not influenced by the presence of the other atoms. It is not possible to express these when the atoms are in the ; liquid or solid state due to the presence of inter atomic forces.
Significance of ground state. Ground state of the atom represents the normal – energy state of an atom. It means electrons in a particular atom are in the lowest energy state and they neither lose nor gain electron. Both ionisation enthalpy and I electron gain enthalpy are generally expressed with respect to the ground state ofan atom only.
APPEARS IN
RELATED QUESTIONS
Would you expect the second electron gain enthalpy of O as positive, more negative or less negative than the first? Justify your answer.
Describe the theory associated with the radius of an atom as it gains an electron.
Describe the theory associated with the radius of an atom as it loses an electron.
Which of the following pair of elements would have a more negative electron gain enthalpy?
O or F
Among halogens, the correct order of amount of energy released in electron gain (electron gain enthalpy) is ______.
The formation of the oxide ion, \[\ce{O2- (g)}\], from oxygen atom requires first an exothermic and then an endothermic step as shown below:
\[\ce{O (g) + e- -> O- (g) ; ∆H^Θ = - 14 kJ mol^{-1}}\]
\[\ce{O- (g) + e- -> O^{2-} (g) ; ∆H^Θ = + 780 kJ mol^{-1}}\]
Thus process of formation of \[\ce{O^{2-}}\] in gas phase is unfavourable even though \[\ce{O^{2-}}\] is isoelectronic with neon. It is due to the fact that,
Which of the following statements are correct?
(i) Helium has the highest first ionisation enthalpy in the periodic table.
(ii) Chlorine has less negative electron gain enthalpy than fluorine.
(iii) Mercury and bromine are liquids at room temperature.
(iv) In any period, atomic radius of alkali metal is the highest.
In which of the following options the order of arrangement does not agree with the variation of the property indicated against it?
(i) \[\ce{Al^{3+} < Mg^{2+} < Na+ < F-}\] (increasing ionic size)
(ii) \[\ce{B < C < N < O}\] (increasing first ionisation enthalpy)
(iii) \[\ce{I < Br < Cl < F}\] (increasing electron gain enthalpy)
(iv) \[\ce{Li < Na < K < Rb}\] (increasing metallic radius)
Explain why the electron gain enthalpy of fluorine is less negative than that of chlorine.
Match the correct ionisation enthalpies and electron gain enthalpies of the following elements.
Elements | ∆H1 | ∆H2 | ∆egH | |
(i) Most reactive non-metal | A. | 419 | 3051 | – 48 |
(ii) Most reactive metal | B. | 1681 | 3374 | – 328 |
(iii) Least reactive element e | C. | 738 | 1451 | – 40 |
(iv) Metal forming binary halide | D. | 2372 | 5251 | + 48 |
Electronic configuration of some elements is given in Column I and their electron gain enthalpies are given in Column II. Match the electronic configuration with electron gain enthalpy.
Column (I) | Column (II) |
Electronic configuration | Electron gain enthalpy/kJ mol–1 |
(i) 1s2 2s2 sp6 | (A) – 53 |
(ii) 1s2 2s2 2p6 3s1 | (B) – 328 |
(iii) 1s2 2s2 2p5 | (C) – 141 |
(iv) 1s2 2s2 2p4 | (D) + 48 |
Assertion (A): Boron has a smaller first ionisation enthalpy than beryllium.
Reason (R): The penetration of a 2s electron to the nucleus is more than the 2p electron hence 2p electron is more shielded by the inner core of electrons than the 2s electrons.
Assertion (A): Electron gain enthalpy becomes less negative as we go down a group.
Reason (R): Size of the atom increases on going down the group and the added electron would be farther from the nucleus.
Discuss the factors affecting electron gain enthalpy and the trend in its variation in the periodic table.
Assertion: The most electronegative element in the periodic table is F.
Reason: Fluorine has the highest negative electron gain enthalpy.
The correct order of electron gain enthalpy (−ve value) is ______.