Advertisements
Advertisements
Question
Energy of an electron in the ground state of the hydrogen atom is –2.18 × 10–18 J. Calculate the ionization enthalpy of atomic hydrogen in terms of J mol–1.
Hint: Apply the idea of mole concept to derive the answer.
Solution 1
It is given that the energy of an electron in the ground state of the hydrogen atom is –2.18 × 10–18 J.
Therefore, the energy required to remove that electron from the ground state of hydrogen atom is 2.18 × 10–18 J.
∴ Ionization enthalpy of atomic hydrogen = 2.18 × 10–18 J
Hence, ionization enthalpy of atomic hydrogen in terms of J mol–1 = 2.18 × 10–18 × 6.02 × 1023 J mol–1 = 1.31 × 106 J mol–1
Solution 2
The ionisation enthalpy is for 1 mole atoms. Therefore, ground state energy of the , atoms may be expressed as E (ground state) = ( – 2.18 x 10-18 J) x(6.022 x 1023 mol-1)= -1.312 x 106 J mol-1
Ionisation enthalpy =E∞–E ground state
= 0-(-1.312 x 106mol-1)
= 1.312 x 106 J mol-1.
APPEARS IN
RELATED QUESTIONS
How would you explain the fact that the first ionization enthalpy of sodium is lower than that of magnesium but its second ionization enthalpy is higher than that of magnesium?
Would you expect the first ionization enthalpies for two isotopes of the same element to be the same or different? Justify your answer.
Which one of the following statements is incorrect in relation to ionization enthalpy?
Those elements impart colour to the flame on heating in it, the atoms of which require low energy for the ionisation (i.e., absorb energy in the visible region of spectrum). The elements of which of the following groups will impart colour to the flame?
(i) 2
(ii) 13
(iii) 1
(iv) 17
Among the elements \[\ce{B, Al, C}\] and \[\ce{Si}\], which element has the highest first ionisation enthalpy?
Arrange the elements \[\ce{N, P, O}\] and \[\ce{S}\] in the order of increasing first ionisation enthalpy. Give reason for the arrangement assigned.
Explain the deviation in ionisation enthalpy of some elements from the general trend by using the given figure.
Explain the following:
Ionisation enthalpy decrease in a group from top to bottom?
Assertion (A): Generally, ionisation enthalpy increases from left to right in a period.
Reason (R): When successive electrons are added to the orbitals in the same principal quantum level, the shielding effect of inner core of electrons does not increase very much to compensate for the increased attraction of the electron to the nucleus.
Define ionisation enthalpy. Discuss the factors affecting ionisation enthalpy of the elements and its trends in the periodic table.
Consider the elements Mg, Al, S, P and Si, the correct increasing order of their first ionization enthalpy is ______.
For the gaseous reaction, \[\ce{K_{(g)} + F_{(g)} -> K^+_{ (g)} + F^-_{ (g)}}\], ΔH was calculated to be 19 kcal/mol under conditions where the cations and anions were prevented by electrostatic separation from combining with each other. The ionisation energy of K is 4.3 eV. The electron affinity of F is ______. (in eV)
`"A"_0/2` atoms of X(g) are converted into X+(g) by absorbing energy E1. `"A"_0/2` ions of X+(g) are converted into X−(g) with release of energy E2. Hence ionization energy and electron affinity of X(g) are ______.
Which of the following atoms has the highest first ionization energy?