Advertisements
Advertisements
Question
When `(2sqrt(5) - sqrt(2))^2` is simplified, we get
Options
`4sqrt(5) + 2sqrt(2)`
`22 - 4sqrt(10)`
`8 - 4sqrt(10)`
`2sqrt(10) - 2`
Solution
`22 - 4sqrt(10)`
Explanation;
Hint:
`(2sqrt(5) - sqrt(2))^2 = (2sqrt(5))^2 + (sqrt(2))^2 - 2 xx 2sqrt(5) xx sqrt(2)`
= `20 - 4sqrt(10) + 2`
= `22 - 4sqrt(10)`
APPEARS IN
RELATED QUESTIONS
Simplify.
`7 sqrt 48 - sqrt 27 - sqrt 3`
Multiply and write the answer in the simplest form.
`5 sqrt 8 xx 2 sqrt 8`
Divide and write the answer in simplest form.
`sqrt 54 ÷ sqrt 27`
Divide and write the answer in simplest form.
`sqrt 310 ÷ sqrt 5`
Simplify.
`5sqrt 3 + 2 sqrt 27 +1/sqrt3`
Simplify the following using addition and subtraction properties of surds:
`5sqrt(3) + 18sqrt(3) - 2sqrt(3)`
Simplify the following using addition and subtraction properties of surds:
`3sqrt(75) + 5sqrt(48) - sqrt(243)`
Simplify the following using multiplication and division properties of surds:
`sqrt(3) xx sqrt(5) xx sqrt(2)`
Simplify the following using multiplication and division properties of surds:
`(7sqrt("a") - 5sqrt("b")) (7sqrt("a") + 5sqrt("b"))`
If `sqrt(2)` = 1.414, `sqrt(3)` = 1.732, `sqrt(5)` = 2.236, `sqrt(10)` = 3.162, then find the values of the following correct to 3 places of decimals.
`sqrt(300) + sqrt(90) - sqrt(8)`