English
Karnataka Board PUCPUC Science Class 11

When a Photon Stimulates the Emission of Another Photon, the Two Photons Have - Physics

Advertisements
Advertisements

Question

When a photon stimulates the emission of another photon, the two photons have
(a) same energy
(b) same direction
(c) same phase
(d) same wavelength

Short Note

Solution

(a) same energy
(b) same direction
(c) same phase
(d) same wavelength

When a photon stimulates the emission of another photon, the two photons have same energy, direction, phase, and wavelength or we can say that the two photons are coherent.
When an atom is present in its excited state then if a photon of energy equal to the energy gap between the excited state and any lower stable state is incident on this atom then the atom transits from upper state to the lower stable state by emitting a photon of energy equal to the energy gap between the two states. It is called stimulated emission. The emitted photon and incident photon have same energy and hence same wavelength. Also these two photons will be in phase and in the same direction. This process of producing monochromatic  and unidirectional light is called lasing action.

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Bohr’s Model and Physics of Atom - MCQ [Page 384]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 21 Bohr’s Model and Physics of Atom
MCQ | Q 6 | Page 384

RELATED QUESTIONS

The longest wavelength doublet absorption transition is observed at 589 and 589.6 nm. Calculate the frequency of each transition and energy difference between two excited states.


In accordance with the Bohr’s model, find the quantum number that characterises the earth’s revolution around the sun in an orbit of radius 1.5 × 1011 m with orbital speed 3 × 104 m/s. (Mass of earth = 6.0 × 1024 kg)


Using Bohr’s postulates, obtain the expressions for (i) kinetic energy and (ii) potential energy of the electron in stationary state of hydrogen atom.

Draw the energy level diagram showing how the transitions between energy levels result in the appearance of Lymann Series.


Balmer series was observed and analysed before the other series. Can you suggest a reason for such an order?


Consider a neutron and an electron bound to each other due to gravitational force. Assuming Bohr's quantization rule for angular momentum to be valid in this case, derive an expression for the energy of the neutron-electron system.


In which of the following systems will the wavelength corresponding to n = 2 to n = 1 be minimum?


Answer the following question.
Use Bohr's model of hydrogen atom to obtain the relationship between the angular momentum and the magnetic moment of the revolving electron.


The energy associated with the first orbit of He+ is ____________ J.


Derive an expression for the frequency of radiation emitted when a hydrogen atom de-excites from level n to level (n – 1). Also show that for large values of n, this frequency equals to classical frequency of revolution of an electron.


The wavelength of the first time line of Ballmer series is 6563 A°. The Rydberg constant for hydrogen is about:-


The ratio of the ionization energy of H and Be+3 is ______.


Taking the Bohr radius as a0 = 53 pm, the radius of Li++ ion in its ground state, on the basis of Bohr’s model, will be about ______.


The ground state energy of hydrogen atoms is -13.6 eV. The photon emitted during the transition of electron from n = 3 to n = 1 unknown work function. The photoelectrons are emitted from the material with a maximum kinetic energy of 9 eV. Calculate the threshold wavelength of the material used.


A 100 eV electron collides with a stationary helium ion (He+) in its ground state and exits to a higher level. After the collision, He+ ions emit two photons in succession with wavelengths 1085 Å and 304 Å. The energy of the electron after the collision will be ______ eV.

Given h = 6.63 × 10-34 Js.


A hydrogen atom in is ground state absorbs 10.2 eV of energy. The angular momentum of electron of the hydrogen atom will increase by the value of ______.

(Given, Planck's constant = 6.6 × 10-34 Js)


What is the energy associated with first orbit of Li2+ (RH = 2.18 × 10-18)?


What is the energy of an electron in stationary state corresponding to n = 2?


According to Bohr's theory, the radius of the nth Bohr orbit of a hydrogen like atom of atomic number Z is proportional to ______.


The total energy of an electron in the nth orbit of the hydrogen atom is proportional to ______.


Using Bohr’s Theory of hydrogen atom, obtain an expression for the velocity of an electron in the nth orbit of an atom.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×