Advertisements
Advertisements
Question
Which of the following is not equal to \[\left( \frac{- 3}{5} \right)^4 ?\]
Options
- \[\frac{( - 3 )^4}{5^4}\]
- \[\frac{3^4}{( - 5 )^4}\]
- \[- \frac{3^4}{5^4}\]
- \[\frac{- 3}{5} \times \frac{- 3}{5} \times \frac{- 3}{5} \times \frac{- 3}{5}\]
MCQ
Sum
Solution
\[- \frac{3^4}{5^4}\]
\[\left( \frac{- 3}{5} \right)^4 = \frac{( - 3 )^4}{5^4} = \frac{3^4}{( - 5 )^4} = \frac{- 3}{5} \times \frac{- 3}{5} \times \frac{- 3}{5} \times \frac{- 3}{5}\]
\[\text{ It is not equal to }- \frac{3^4}{5^4}\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Simplify and express the result in power notation with positive exponent.
(−4)5 ÷ (−4)8
Simplify:
\[\left( 3^2 + 2^2 \right) \times \left( \frac{1}{2} \right)^3\]
Simplify:
\[\left[ \left( \frac{1}{3} \right)^{- 3} - \left( \frac{1}{2} \right)^{- 3} \right] \div \left( \frac{1}{4} \right)^{- 3}\]
Find x, if
\[\left( \frac{5}{4} \right)^{- x} \div \left( \frac{5}{4} \right)^{- 4} = \left( \frac{5}{4} \right)^5\]
\[\left( \frac{2}{3} \right)^{- 5}\] is equal to
\[\left( \frac{3}{4} \right)^5 \div \left( \frac{5}{3} \right)^5\] is equal to
For any two non-zero rational numbers a and b, a4 ÷ b4 is equal to
Find the value of (30 + 4−1) × 22.
The multiplicative inverse of (– 4)–2 is (4)–2.
Express 16–2 as a power with the base 2.