English

Which of the following characteristics of transition metals is associated with their catalytic activity? - Chemistry

Advertisements
Advertisements

Question

Which of the following characteristics of transition metals is associated with their catalytic activity?

Options

  • Paramagnetic nature

  • Colour of hydrated ions

  • High enthalpy of atomisation

  • Variable oxidation states

MCQ
Fill in the Blanks

Solution

Variable oxidation states

Explanation:

Transition metals have a tendency to have varying oxidation states, which allows them to create unstable intermediates and provide a novel reaction path with a lower Ea. As a result, transition metals have catalytic activity.

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Outside Delhi Set 1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Account for the following:

Cu+2 salts are coloured, while Zn2+ salts are white.


The elements of 3d transition series are given as: Sc Ti V Cr Mn Fe Co

Answer the following: Which element shows only +3 oxidation state?


What may be the stable oxidation state of the transition element with the following d electron configurations in the ground state of their atoms?

3d3, 3d5, 3d8 and 3d4


Give reasons for the following:

The transition metals generally form coloured compounds.


Transition elements form binary compounds with halogens. Which of the following elements will form \[\ce{MF3}\] type compounds?

(i) \[\ce{Cr}\]

(ii) \[\ce{Co}\]

(iii) \[\ce{Cu}\]

(iv) \[\ce{Ni}\]


Although fluorine is more electronegative than oxygen, but the ability of oxygen to stabilise higher oxidation states exceeds that of fluorine. Why?


While filling up of electrons in the atomic orbitals, the 4s orbital is filled before the 3d orbital but reverse happens during the ionisation of the atom. Explain why?


Read the passage given below and answer the following question.

Are there nuclear reactions going on in our bodies?

There are nuclear reactions constantly occurring in our bodies, but there are very few of them compared to the chemical reactions, and they do not affect our bodies much. All of the physical processes that take place to keep a human body running are chemical processes. Nuclear reactions can lead to chemical damage, which the body may notice and try to fix. The nuclear reaction occurring in our bodies is radioactive decay. This is the change of a less stable nucleus to a more stable nucleus. Every atom has either a stable nucleus or an unstable nucleus, depending on how big it is and on the ratio of protons to neutrons. The ratio of neutrons to protons in a stable nucleus is thus around 1 : 1 for small nuclei (Z < 20). Nuclei with too many neutrons, too few neutrons, or that are simply too big are unstable. They eventually transform to a stable form through radioactive decay. Wherever there are atoms with unstable nuclei (radioactive atoms), there are nuclear reactions occurring naturally. The interesting thing is that there are small amounts of radioactive atoms everywhere: in your chair, in the ground, in the food you eat, and yes, in your body.

The most common natural radioactive isotopes in humans are carbon-14 and potassium-40. Chemically, these isotopes behave exactly like stable carbon and potassium. For this reason, the body uses carbon-14 and potassium-40 just like it does normal carbon and potassium; building them into the different parts of the cells, without knowing that they are radioactive. In time, carbon-14 atoms decay to stable nitrogen atoms and potassium-40 atoms decay to stable calcium atoms. Chemicals in the body that relied on having a carbon-14 atom or potassium-40 atom in a certain spot will suddenly have a nitrogen or calcium atom. Such a change damages the chemical. Normally, such changes are so rare, that the body can repair the damage or filter away the damaged chemicals.

The natural occurrence of carbon-14 decay in the body is the core principle behind carbon dating. As long as a person is alive and still eating, every carbon-14 atom that decays into a nitrogen atom is replaced on average with a new carbon-14 atom. But once a person dies, he stops replacing the decaying carbon-14 atoms. Slowly the carbon-14 atoms decay to nitrogen without being replaced, so that there is less and less carbon-14 in a dead body. The rate at which carbon-14 decays is constant and follows first order kinetics. It has a half-life of nearly 6000 years, so by measuring the relative amount of carbon-14 in a bone, archeologists can calculate when the person died. All living organisms consume carbon, so carbon dating can be used to date any living organism, and any object made from a living organism. Bones, wood, leather, and even paper can be accurately dated, as long as they first existed within the last 60,000 years. This is all because of the fact that nuclear reactions naturally occur in living organisms.

Researchers have uncovered the youngest known dinosaur bone, dating around 65 million years ago. How was the age of this fossil estimated?


Which of the following ions has the electronic configuration 3d6?
(Atomic number: Mn = 25, Co = 27, Ni = 28)


A coordination compound has the formula \[\ce{CoCl3.4NH3}\]. It precipitates silver ions as AgCl and its molar conductance corresponds to a total of two ions.

Based on this information, answer the following question:

  1. Deduce the structural formula of the complex compound.
  2. Write the IUPAC name of the complex compound.
  3. Draw the geometrical isomers of the complex compound.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×