English
Karnataka Board PUCPUC Science 2nd PUC Class 12

Write nuclear reaction equation for β−-decay of P1532P. - Physics

Advertisements
Advertisements

Question

Write nuclear reaction equation for β-decay of `""_15^32"P"`.

Short Note

Solution

α is a nucleus of helium `(""_2^4"He")` and β is an electron (e− for β and e+ for β+). In every α-decay, there is a loss of 2 protons and 4 neutrons. In every β+-decay, there is a loss of 1 proton and a neutrino is emitted from the nucleus. In every β-decay, there is a gain of 1 proton and an antineutrino is emitted from the nucleus.

For the given case, the various nuclear reaction can be written as:

`""_15^32"P" -> ""_16^32"S" + "e"^- + bar"v"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Nuclei - Exercise [Page 462]

APPEARS IN

NCERT Physics [English] Class 12
Chapter 13 Nuclei
Exercise | Q 13.6 (iii) | Page 462
NCERT Physics [English] Class 12
Chapter 13 Nuclei
Exercise | Q 6.3 | Page 462

RELATED QUESTIONS

The half life of a certain radioactive material against \u0003α-decay is 100 days. After how much time, will the undecayed fraction of the material be 6.25%?


Write nuclear reaction equation for β-decay of `""_83^210"Bi"`.


Write nuclear reaction equation for β+-decay of `""_43^97"Tc"`.


Draw graphs showing variation of photoelectric current with applied voltage for two incident radiations of equal frequency and different intensities. Mark the graph for the radiation of higher intensity.


Define ‘activity’ of a radioactive material and write its S.I. units.


State the law of radioactive decay. hence derive the relation N = Noe-λt . Represent it graphically.


Radioactive 131I has a half-life of 8.0 days. A sample containing 131I has activity 20 µCi at t = 0. (a) What is its activity at t = 4 days? (b) What is its decay constant at t = 4.0 days?


The count rate from a radioactive sample falls from 4.0 × 106 per second to 1.0 × 106per second in 20 hours. What will be the count rate 100 hours after the beginning?


The half-life of a radioisotope is 10 h. Find the total number of disintegration in the tenth hour measured from a time when the activity was 1 Ci.


`""_80^197`Hg decay to `""_79^197`Au through electron capture with a decay constant of 0.257 per day. (a) What other particle or particles are emitted in the decay? (b) Assume that the electron is captured from the K shell. Use Moseley's law √v = a(Z − b) with a = 4.95 × 107s−1/2 and b = 1 to find the wavelength of the Kα X-ray emitted following the electron capture.


The count rate of nuclear radiation coming from a radiation coming from a radioactive sample containing 128I varies with time as follows.

Time t (minute): 0 25 50 75 100
Ctount rate R (109 s−1): 30 16 8.0 3.8 2.0

(a) Plot In (R0/R) against t. (b) From the slope of the best straight line through the points, find the decay constant λ. (c) Calculate the half-life t1/2.


238U decays to 206Pb with a half-life of 4.47 × 109 y. This happens in a number of steps. Can you justify a single half for this chain of processes? A sample of rock is found to contain 2.00 mg of 238U and 0.600 mg of 206Pb. Assuming that all the lead has come from uranium, find the life of the rock.


A human body excretes (removes by waste discharge, sweating, etc.) certain materials by a law similar to radioactivity. If technetium is injected in some form in a human body, the body excretes half the amount in 24 hours. A patient is given an injection containing 99Tc. This isotope is radioactive with a half-life of 6 hours. The activity from the body just after the injection is 6 μCi. How much time will elapse before the activity falls to 3 μCi?


`""_83^212"Bi"` can disintegrate either by emitting an α-particle of by emitting a β-particle. (a) Write the two equations showing the products of the decays. (b) The probabilities of disintegration α-and β-decays are in the ratio 7/13. The overall half-life of 212Bi is one hour. If 1 g of pure 212Bi is taken at 12.00 noon, what will be the composition of this sample at 1 P.m. the same day?


The half-life of radium is 1550 years. Calculate its disintegration constant (`lambda`) . 


The half-life of a certain radioactive element is 3.465 days. Find its disintegration constant.


Half-life of a certain radioactive material is 8 hours.

Find the disintegration constant of this material.


A nucleus with Z = 92 emits the following in a sequence:

α, β‾, β‾, α, α, α, α, α, β‾, β‾, α, β+, β+, α  

Then Z of the resulting nucleus is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×