Advertisements
Advertisements
Question
यदि `barx_1, barx_2, barx_3, ..., barx_n` क्रमश : प्रेक्षणों की संख्या n1, n2, ..., nn वाले n समूहों के माध्य हैं, तो सभी समूहों को मिलाकर लेने पर उनका माध्य `barx` निम्नलिखित से प्राप्त होता है :
Options
`sum_(i = 1)^n n_i barx_i`
`(sum_(i = 1)^n n_i barx_i)/n^2`
`(sum_(i = 1)^n n_i barx_i)/(sum_(i = 1)^n n_i)`
`(sum_(i = 1)^n n_i barx_i)/(2n)`
Solution
`bb((sum_(i = 1)^n n_i barx_i)/(sum_(i = 1)^n n_i))`
स्पष्टीकरण -
दिया गया है, `barx_1, barx_2, barx_3, ..., barx_n` क्रमश : n1, n2, ..., nn संख्या वाले n समूहों के साधन हैं।
फिर, `n_1 barx_1 = sum_(i = 1)^(n_1) x_i, n_2 barx_2`
= `sum_(j = 1)^(n_2 ) x_j, n_3 barx_3`
= `sum_(k = 1)^(n_3) x_k, ..., n_n barx_n`
= `sum_(p = 1)^(n_n) x_p`
अब, सभी समूहों को मिलाकर `barx` का अर्थ दिया गया है।
`barx = (sum_(i = 1)^(n_1) x_i + sum_(j = 1)^(n_2) x_j + sum_(k = 1)^(n_3) x_k + .... + sum_(p = 1)^(n_n) x_p)/(n_1 + n_2 + ... + n_n)`
= `(n_1 barx_1 + n_2 barx_2 + n_3 barx_3 + ... + n_n barx_n)/(n_1 + n_2 + ... + n_n)`
= `(sum_(i = 1)^n n_i barx_i)/(sum_(i = 1)^n n_i)`
अत:, एक साथ लिए गए सभी समूहों का माध्य है।
`barx = (sum_(i = 1)^n n_i barx_i)/(sum_(i = 1)^n n_i)`
APPEARS IN
RELATED QUESTIONS
एक टीम ने फुटबाल के 10 मैचों में निम्नलिखित गोल किए : 2, 3,4, 5, 0, 1, 3, 3, 4, 3 इन गोलों के माध्य, माध्यक और बहुलक ज्ञात कीजिए।
यदि x, x + 3, x + 5, x + 7 प्रेक्षणों और x + 10 का माध्य 9 है, तो अंतिम तीन प्रेक्षणों का माध्य है
यदि x1, x2, ..., xn का माध्य `barx` है, y1, y2, ..., yn का माध्य `bary` है तथा x1, x2, ..., xn, y1, y2, ..., yn का माध्य `barz` है, तो `barz` बराबर है :
50 संख्याएँ दी हुई हैं। इनमें से प्रत्येक संख्या को 53 में से घटाया जाता है तथा इस प्रकार प्राप्त संख्याओं का माध्य –3.5 ज्ञात किया जाता है। दी हुई संख्याओं का माध्य है :
25 प्रेक्षणों का माध्य 36 है। इन प्रेक्षणों में से यदि प्रथम 13 प्रेक्षणों का माध्य 32 है तथा अंतिम 13 का माध्य 40 है तो 13वाँ प्रेक्षण है :
एक सतत बारंबारता बंटन का बारंबारता बहुभुज खींचने के लिए, हम उन बिंदुओं को आलेखित करते हैं जिनकी कोटियाँ क्रमश : वर्गों की बारंबारताएँ होती हैं तथा भुज क्रमश : होते हैं
किसी कक्षा के विद्यार्थियों की एक मेडिकल परीक्षा में निम्नलिखित रक्त समूह रिकार्ड किए गए :
रक्त समूह | A | AB | B | O |
विद्यार्थियों का समूह | 10 | 13 | 12 | 5 |
इस कक्षा में से एक विद्यार्थी यादृच्छिक रूप से चुना जाता है। इस विद्यार्थी का रक्त समूह B होने की प्रायिकता है :
गणित के एक टेस्ट में, 33 विद्यार्थियों द्वारा (100 में से) प्राप्त किए गए अंक निम्नलिखित हैं :
69, 48, 84, 58, 48, 73, 83, 48, 66, 58, 84, 66, 64, 71, 64, 66, 69, 66, 83, 66, 69, 71, 81, 71, 73, 69, 66, 66, 64, 58, 64, 69, 69
इन आँकड़ों को एक बारंबारता बंटन द्वारा निरूपित कीजिए।
दस प्रेक्षणों 6, 14, 15, 17, x + 1, 2x – 13, 30, 32, 34 और 43 को आरोही क्रम में लिखा गया है। इन आँकड़ों का माध्यक 24 है। x का मान ज्ञात कीजिए।
एक अस्पताल में, ब्लड शुगर के स्तर (mg/dl) की जाँच के लिए 25 रोगी भर्ती किए गए तथा प्राप्त परिणाम निम्नलिखित रहे :
87 | 71 | 83 | 67 | 85 |
77 | 69 | 76 | 65 | 85 |
85 | 54 | 70 | 68 | 80 |
73 | 78 | 68 | 85 | 73 |
81 | 78 | 81 | 77 | 75 |
उपरोक्त आँकड़ों का माध्य, माध्यक और बहुलक (mg/dl) ज्ञात कीजिए।