Advertisements
Advertisements
प्रश्न
यदि `barx_1, barx_2, barx_3, ..., barx_n` क्रमश : प्रेक्षणों की संख्या n1, n2, ..., nn वाले n समूहों के माध्य हैं, तो सभी समूहों को मिलाकर लेने पर उनका माध्य `barx` निम्नलिखित से प्राप्त होता है :
विकल्प
`sum_(i = 1)^n n_i barx_i`
`(sum_(i = 1)^n n_i barx_i)/n^2`
`(sum_(i = 1)^n n_i barx_i)/(sum_(i = 1)^n n_i)`
`(sum_(i = 1)^n n_i barx_i)/(2n)`
उत्तर
`bb((sum_(i = 1)^n n_i barx_i)/(sum_(i = 1)^n n_i))`
स्पष्टीकरण -
दिया गया है, `barx_1, barx_2, barx_3, ..., barx_n` क्रमश : n1, n2, ..., nn संख्या वाले n समूहों के साधन हैं।
फिर, `n_1 barx_1 = sum_(i = 1)^(n_1) x_i, n_2 barx_2`
= `sum_(j = 1)^(n_2 ) x_j, n_3 barx_3`
= `sum_(k = 1)^(n_3) x_k, ..., n_n barx_n`
= `sum_(p = 1)^(n_n) x_p`
अब, सभी समूहों को मिलाकर `barx` का अर्थ दिया गया है।
`barx = (sum_(i = 1)^(n_1) x_i + sum_(j = 1)^(n_2) x_j + sum_(k = 1)^(n_3) x_k + .... + sum_(p = 1)^(n_n) x_p)/(n_1 + n_2 + ... + n_n)`
= `(n_1 barx_1 + n_2 barx_2 + n_3 barx_3 + ... + n_n barx_n)/(n_1 + n_2 + ... + n_n)`
= `(sum_(i = 1)^n n_i barx_i)/(sum_(i = 1)^n n_i)`
अत:, एक साथ लिए गए सभी समूहों का माध्य है।
`barx = (sum_(i = 1)^n n_i barx_i)/(sum_(i = 1)^n n_i)`
APPEARS IN
संबंधित प्रश्न
निम्न स्थिति पर आधारित एक उदाहरण दीजिए।
- माध्य की केंद्रीय प्रवृत्ति का उपयुक्त माप है।
- माध्य केंद्रीय प्रवृत्ति का उपयुक्त माप नहीं है, जबकि माध्यक एक उपयुक्त माप है।
यदि x, x + 3, x + 5, x + 7 प्रेक्षणों और x + 10 का माध्य 9 है, तो अंतिम तीन प्रेक्षणों का माध्य है
यदि x1, x2, ..., xn का माध्य `barx` है, y1, y2, ..., yn का माध्य `bary` है तथा x1, x2, ..., xn, y1, y2, ..., yn का माध्य `barz` है, तो `barz` बराबर है :
50 संख्याएँ दी हुई हैं। इनमें से प्रत्येक संख्या को 53 में से घटाया जाता है तथा इस प्रकार प्राप्त संख्याओं का माध्य –3.5 ज्ञात किया जाता है। दी हुई संख्याओं का माध्य है :
किसी कक्षा के विद्यार्थियों की एक मेडिकल परीक्षा में निम्नलिखित रक्त समूह रिकार्ड किए गए :
रक्त समूह | A | AB | B | O |
विद्यार्थियों का समूह | 10 | 13 | 12 | 5 |
इस कक्षा में से एक विद्यार्थी यादृच्छिक रूप से चुना जाता है। इस विद्यार्थी का रक्त समूह B होने की प्रायिकता है :
दो सिक्कों को 1000 बार उछाला जाता है और इनके परिणाम निम्नलिखित प्रकार से रिकार्ड किए जाते हैं :
चितों की संख्या | 2 | 1 | 0 |
बारंबारता | 200 | 550 | 250 |
इस सूचना के आधार पर अधिकतम एक चित की प्रायिकता है :
एक संग्रह में से 80 बल्ब यादृच्छिक रूप से चुने जाते हैं और उनके जीवन कालों (घंटों में) को निम्नलिखित बारंबारता सारणी के रूप में रिकार्ड किया गया :
जीवन काल (घंटों में) | 300 | 500 | 700 | 900 | 1100 |
बारंबारता | 10 | 12 | 23 | 25 | 10 |
इस संग्रह में से एक बल्ब यादृच्छिक रूप से चुना जाता है। इस बल्ब का जीवन काल 1150 घंटा होने की प्रायिकता है :
निम्नलिखित आँकड़ों से एक सतत बारंबारता बंटन तैयार कीजिए :
मध्य-बिंदु | बारंबारता |
5 | 4 |
15 | 8 |
25 | 13 |
35 | 12 |
45 | 6 |
वर्ग अंतरालों के माप भी ज्ञात कीजिए।
निम्नलिखित बंटन का माध्य ज्ञात कीजिए :
बारंबारताएँ | चर |
4 | 4 |
8 | 6 |
14 | 8 |
11 | 10 |
3 | 12 |
एक अस्पताल में, ब्लड शुगर के स्तर (mg/dl) की जाँच के लिए 25 रोगी भर्ती किए गए तथा प्राप्त परिणाम निम्नलिखित रहे :
87 | 71 | 83 | 67 | 85 |
77 | 69 | 76 | 65 | 85 |
85 | 54 | 70 | 68 | 80 |
73 | 78 | 68 | 85 | 73 |
81 | 78 | 81 | 77 | 75 |
उपरोक्त आँकड़ों का माध्य, माध्यक और बहुलक (mg/dl) ज्ञात कीजिए।