Advertisements
Advertisements
प्रश्न
50 संख्याएँ दी हुई हैं। इनमें से प्रत्येक संख्या को 53 में से घटाया जाता है तथा इस प्रकार प्राप्त संख्याओं का माध्य –3.5 ज्ञात किया जाता है। दी हुई संख्याओं का माध्य है :
विकल्प
46.5
49.5
53.5
56.5
उत्तर
56.5
स्पष्टीकरण:
दिया गया है, n = 50, माध्य `barx = (sum_(i = 1)^n x_i)/n`
फिर, `barx = 1/50 xx sum_(i = 1)^50 x_i` ...(i)
⇒ `sum_(i = 1)^50 x_i = 50 barx`
अब, 53 में से प्रत्येक प्रेक्षण को घटाकर, हमें एक नया माध्य मिलता है `barx_("new")`.
∴ `barx_("new") = ((-x_1 + 53) + (-x_2 + 53) + ... + (-x_50 + 53))/50`
⇒ `-3.5 = (-(x_1 + x_2 + ... + x_50) + (53 + 53 + ... + 50 "बार"))/50`
⇒ `-3.5 xx 50 = - (x_1 + x_2 + ... + x_50) + 53 xx 50`
⇒ `sum_(i = 1)^50 x_i` = 2650 + 175 = 2825
∴ 50 प्रेक्षणों का माध्य = `1/50 sum_(i = 1)^50 x_i` ...`[∵ "माध्य" = (sum_(i = 1)^n x_i)/n]`
= `1/50 xx 2825`
= 56.5
अत:, दी गई संख्या का माध्य 56.5 है।
APPEARS IN
संबंधित प्रश्न
एक टीम ने फुटबाल के 10 मैचों में निम्नलिखित गोल किए : 2, 3,4, 5, 0, 1, 3, 3, 4, 3 इन गोलों के माध्य, माध्यक और बहुलक ज्ञात कीजिए।
गणित की परीक्षा में 15 विद्यार्थियों ने (100 में से ) निम्नलिखित अंक प्राप्त किए :41, 39, 48, 52, 46, 62, 54, 40, 96, 52, 98, 40, 42, 52, 60
इन आँकड़ों के माध्य, माध्यक और बहुलक ज्ञात कीजिए।
आँकड़ों 14, 25, 14, 28, 18, 17, 18, 14, 23, 22, 14, 18 का बहुलक ज्ञात कीजिए।
निम्न स्थिति पर आधारित एक उदाहरण दीजिए।
- माध्य की केंद्रीय प्रवृत्ति का उपयुक्त माप है।
- माध्य केंद्रीय प्रवृत्ति का उपयुक्त माप नहीं है, जबकि माध्यक एक उपयुक्त माप है।
यदि x1, x2, ..., xn का माध्य `barx` है, y1, y2, ..., yn का माध्य `bary` है तथा x1, x2, ..., xn, y1, y2, ..., yn का माध्य `barz` है, तो `barz` बराबर है :
25 प्रेक्षणों का माध्य 36 है। इन प्रेक्षणों में से यदि प्रथम 13 प्रेक्षणों का माध्य 32 है तथा अंतिम 13 का माध्य 40 है तो 13वाँ प्रेक्षण है :
19 – 36 महीने की आयु वाले 364 बच्चों पर किए गए एक सर्वे में यह पाया गया कि 91 बच्चे आलू के चिप्स खाना पसंद करते हैं। इनमें से एक बच्चा यदि यादृच्छिक (यदृच्छ) रूप से चुना जाता है तो इसकी प्रायिकता कि वह बच्चा आलू के चिप्स पसंद नहीं करेगा, है :
निम्नलिखित आँकड़ों से एक सतत बारंबारता बंटन तैयार कीजिए :
मध्य-बिंदु | बारंबारता |
5 | 4 |
15 | 8 |
25 | 13 |
35 | 12 |
45 | 6 |
वर्ग अंतरालों के माप भी ज्ञात कीजिए।
यदि निम्नलिखित आँकड़ों का माध्य 20.2 है, तो p का मान ज्ञात कीजिए :
x | 10 | 15 | 20 | 25 | 30 |
f | 6 | 8 | p | 10 | 6 |
निम्नलिखित बंटन का माध्य 50 है।
x | f |
10 | 17 |
30 | 5a + 3 |
50 | 32 |
70 | 7a – 11 |
90 | 19 |
a का मान ज्ञात कीजिए और फिर 30 और 70 की बारंबारता ज्ञात कीजिए।