Advertisements
Advertisements
प्रश्न
50 संख्याएँ दी हुई हैं। इनमें से प्रत्येक संख्या को 53 में से घटाया जाता है तथा इस प्रकार प्राप्त संख्याओं का माध्य –3.5 ज्ञात किया जाता है। दी हुई संख्याओं का माध्य है :
पर्याय
46.5
49.5
53.5
56.5
उत्तर
56.5
स्पष्टीकरण:
दिया गया है, n = 50, माध्य `barx = (sum_(i = 1)^n x_i)/n`
फिर, `barx = 1/50 xx sum_(i = 1)^50 x_i` ...(i)
⇒ `sum_(i = 1)^50 x_i = 50 barx`
अब, 53 में से प्रत्येक प्रेक्षण को घटाकर, हमें एक नया माध्य मिलता है `barx_("new")`.
∴ `barx_("new") = ((-x_1 + 53) + (-x_2 + 53) + ... + (-x_50 + 53))/50`
⇒ `-3.5 = (-(x_1 + x_2 + ... + x_50) + (53 + 53 + ... + 50 "बार"))/50`
⇒ `-3.5 xx 50 = - (x_1 + x_2 + ... + x_50) + 53 xx 50`
⇒ `sum_(i = 1)^50 x_i` = 2650 + 175 = 2825
∴ 50 प्रेक्षणों का माध्य = `1/50 sum_(i = 1)^50 x_i` ...`[∵ "माध्य" = (sum_(i = 1)^n x_i)/n]`
= `1/50 xx 2825`
= 56.5
अत:, दी गई संख्या का माध्य 56.5 है।
APPEARS IN
संबंधित प्रश्न
गणित की परीक्षा में 15 विद्यार्थियों ने (100 में से ) निम्नलिखित अंक प्राप्त किए :41, 39, 48, 52, 46, 62, 54, 40, 96, 52, 98, 40, 42, 52, 60
इन आँकड़ों के माध्य, माध्यक और बहुलक ज्ञात कीजिए।
निम्न स्थिति पर आधारित एक उदाहरण दीजिए।
- माध्य की केंद्रीय प्रवृत्ति का उपयुक्त माप है।
- माध्य केंद्रीय प्रवृत्ति का उपयुक्त माप नहीं है, जबकि माध्यक एक उपयुक्त माप है।
4, 4, 5, 7, 6, 7, 7, 12, 3 संख्याओं का माध्यक है :
19 – 36 महीने की आयु वाले 364 बच्चों पर किए गए एक सर्वे में यह पाया गया कि 91 बच्चे आलू के चिप्स खाना पसंद करते हैं। इनमें से एक बच्चा यदि यादृच्छिक (यदृच्छ) रूप से चुना जाता है तो इसकी प्रायिकता कि वह बच्चा आलू के चिप्स पसंद नहीं करेगा, है :
एक संग्रह में से 80 बल्ब यादृच्छिक रूप से चुने जाते हैं और उनके जीवन कालों (घंटों में) को निम्नलिखित बारंबारता सारणी के रूप में रिकार्ड किया गया :
जीवन काल (घंटों में) | 300 | 500 | 700 | 900 | 1100 |
बारंबारता | 10 | 12 | 23 | 25 | 10 |
इस संग्रह में से एक बल्ब यादृच्छिक रूप से चुना जाता है। इस बल्ब का जीवन काल 1150 घंटा होने की प्रायिकता है :
निम्नलिखित बंटन का माध्य ज्ञात कीजिए :
बारंबारताएँ | चर |
4 | 4 |
8 | 6 |
14 | 8 |
11 | 10 |
3 | 12 |
एक कक्षा में 50 विद्यार्थी हैं, जिनमें से 30 लड़कियाँ हैं। एक टेस्ट में लड़कियों द्वारा (100 में से) प्राप्त किए गए अंकों का माध्य 73 तथा लड़कों का 71 है। संपूर्ण कक्षा के माध्य प्राप्तांक ज्ञात कीजिए।
50 प्रेक्षणों का माध्य 80.4 प्राप्त हुआ। परंतु बाद में यह ज्ञात हुआ कि एक स्थान पर 96 को 69 पढ़ लिया गया है। सही माध्य ज्ञात कीजिए।
दस प्रेक्षणों 6, 14, 15, 17, x + 1, 2x – 13, 30, 32, 34 और 43 को आरोही क्रम में लिखा गया है। इन आँकड़ों का माध्यक 24 है। x का मान ज्ञात कीजिए।
एक अस्पताल में, ब्लड शुगर के स्तर (mg/dl) की जाँच के लिए 25 रोगी भर्ती किए गए तथा प्राप्त परिणाम निम्नलिखित रहे :
87 | 71 | 83 | 67 | 85 |
77 | 69 | 76 | 65 | 85 |
85 | 54 | 70 | 68 | 80 |
73 | 78 | 68 | 85 | 73 |
81 | 78 | 81 | 77 | 75 |
उपरोक्त आँकड़ों का माध्य, माध्यक और बहुलक (mg/dl) ज्ञात कीजिए।