Advertisements
Advertisements
प्रश्न
निम्न स्थिति पर आधारित एक उदाहरण दीजिए।
- माध्य की केंद्रीय प्रवृत्ति का उपयुक्त माप है।
- माध्य केंद्रीय प्रवृत्ति का उपयुक्त माप नहीं है, जबकि माध्यक एक उपयुक्त माप है।
उत्तर
जब किसी डेटा में कुछ अवलोकन होते हैं जैसे कि ये अन्य अवलोकनों से बहुत दूर होते हैं, तो डेटा के माध्य की तुलना में माध्यिका की गणना करना बेहतर होता है क्योंकि इस मामले में माध्यिका औसत का बेहतर अनुमान देती है।
(i) निम्नलिखित उदाहरण पर विचार करें - निम्नलिखित डेटा एक परिवार के सदस्यों की ऊंचाई को दर्शाता है।
154.9 सेमी, 162.8 सेमी, 170.6 सेमी, 158.8 सेमी, 163.3 सेमी, 166.8 सेमी, 160.2 सेमी
इस मामले में, यह देखा जा सकता है कि दिए गए डेटा में अवलोकन एक दूसरे के करीब हैं। इसलिए, माध्य की गणना केंद्रीय प्रवृत्ति के उपयुक्त माप के रूप में की जाएगी।
(ii) निम्नलिखित डेटा एक परीक्षा में 12 छात्रों द्वारा प्राप्त अंकों को दर्शाता है।
48, 59, 46, 52, 54, 46, 97, 42, 49, 58, 60, 99
इस मामले में, यह देखा जा सकता है कि कुछ अवलोकन ऐसे हैं जो अन्य अवलोकनों से बहुत दूर हैं। अत: यहाँ माध्यिका की गणना केन्द्रीय प्रवृत्ति के उपयुक्त माप के रूप में की जाएगी।
APPEARS IN
संबंधित प्रश्न
एक टीम ने फुटबाल के 10 मैचों में निम्नलिखित गोल किए : 2, 3,4, 5, 0, 1, 3, 3, 4, 3 इन गोलों के माध्य, माध्यक और बहुलक ज्ञात कीजिए।
यदि आँकड़ों के प्रत्येक प्रेक्षण में 5 की वृद्धि की जाती है तो उनका माध्य ______।
25 प्रेक्षणों का माध्य 36 है। इन प्रेक्षणों में से यदि प्रथम 13 प्रेक्षणों का माध्य 32 है तथा अंतिम 13 का माध्य 40 है तो 13वाँ प्रेक्षण है :
78, 56, 22, 34, 45, 54, 39, 68, 54, 84 आँकड़ों का माध्यक है
एक सतत बारंबारता बंटन का बारंबारता बहुभुज खींचने के लिए, हम उन बिंदुओं को आलेखित करते हैं जिनकी कोटियाँ क्रमश : वर्गों की बारंबारताएँ होती हैं तथा भुज क्रमश : होते हैं
एक कक्षा में 50 विद्यार्थी हैं, जिनमें से 30 लड़कियाँ हैं। एक टेस्ट में लड़कियों द्वारा (100 में से) प्राप्त किए गए अंकों का माध्य 73 तथा लड़कों का 71 है। संपूर्ण कक्षा के माध्य प्राप्तांक ज्ञात कीजिए।
50 प्रेक्षणों का माध्य 80.4 प्राप्त हुआ। परंतु बाद में यह ज्ञात हुआ कि एक स्थान पर 96 को 69 पढ़ लिया गया है। सही माध्य ज्ञात कीजिए।
किसी बास्केट बॉल टीम द्वारा मैचों की एक श्रृंखला में निम्नलिखित प्वाइंट अर्जित किए गए :
17, 2, 7, 27, 25, 5, 14, 18, 10, 24, 48, 10, 8, 7, 10, 28
इन आँकड़ों के लिए माध्यक और बहुलक ज्ञात कीजिए।
निम्नलिखित बंटन का माध्य 50 है।
x | f |
10 | 17 |
30 | 5a + 3 |
50 | 32 |
70 | 7a – 11 |
90 | 19 |
a का मान ज्ञात कीजिए और फिर 30 और 70 की बारंबारता ज्ञात कीजिए।
एक अस्पताल में, ब्लड शुगर के स्तर (mg/dl) की जाँच के लिए 25 रोगी भर्ती किए गए तथा प्राप्त परिणाम निम्नलिखित रहे :
87 | 71 | 83 | 67 | 85 |
77 | 69 | 76 | 65 | 85 |
85 | 54 | 70 | 68 | 80 |
73 | 78 | 68 | 85 | 73 |
81 | 78 | 81 | 77 | 75 |
उपरोक्त आँकड़ों का माध्य, माध्यक और बहुलक (mg/dl) ज्ञात कीजिए।