हिंदी

निम्न स्थिति पर आधारित एक उदाहरण दीजिए। माध्य की केंद्रीय प्रवृत्ति का उपयुक्त माप है। माध्य केंद्रीय प्रवृत्ति का उपयुक्त माप नहीं है, जबकि माध्यक एक उपयुक्त माप है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्न स्थिति पर आधारित एक उदाहरण दीजिए।

  1. माध्य की केंद्रीय प्रवृत्ति का उपयुक्त माप है।
  2. माध्य केंद्रीय प्रवृत्ति का उपयुक्त माप नहीं है, जबकि माध्यक एक उपयुक्त माप है।
संक्षेप में उत्तर
योग

उत्तर

जब किसी डेटा में कुछ अवलोकन होते हैं जैसे कि ये अन्य अवलोकनों से बहुत दूर होते हैं, तो डेटा के माध्य की तुलना में माध्यिका की गणना करना बेहतर होता है क्योंकि इस मामले में माध्यिका औसत का बेहतर अनुमान देती है।

(i) निम्नलिखित उदाहरण पर विचार करें - निम्नलिखित डेटा एक परिवार के सदस्यों की ऊंचाई को दर्शाता है।

154.9 सेमी, 162.8 सेमी, 170.6 सेमी, 158.8 सेमी, 163.3 सेमी, 166.8 सेमी, 160.2 सेमी

इस मामले में, यह देखा जा सकता है कि दिए गए डेटा में अवलोकन एक दूसरे के करीब हैं। इसलिए, माध्य की गणना केंद्रीय प्रवृत्ति के उपयुक्त माप के रूप में की जाएगी।

(ii) निम्नलिखित डेटा एक परीक्षा में 12 छात्रों द्वारा प्राप्त अंकों को दर्शाता है।

48, 59, 46, 52, 54, 46, 97, 42, 49, 58, 60, 99

इस मामले में, यह देखा जा सकता है कि कुछ अवलोकन ऐसे हैं जो अन्य अवलोकनों से बहुत दूर हैं। अत: यहाँ माध्यिका की गणना केन्द्रीय प्रवृत्ति के उपयुक्त माप के रूप में की जाएगी।

shaalaa.com
केन्द्रीय प्रवृत्ति के माप
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: सांख्यिकी - प्रश्नावली 14.4 [पृष्ठ ३२१]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 9
अध्याय 14 सांख्यिकी
प्रश्नावली 14.4 | Q 6. | पृष्ठ ३२१

संबंधित प्रश्न

गणित की परीक्षा में 15 विद्यार्थियों ने (100 में से ) निम्नलिखित अंक प्राप्त किए :41, 39, 48, 52, 46, 62, 54, 40, 96, 52, 98, 40, 42, 52, 60
इन आँकड़ों के माध्य, माध्यक और बहुलक ज्ञात कीजिए।


निम्नलिखित प्रेक्षणों को आरोही क्रम में व्यवस्थित किया गया है। यदि आँकड़ों का माध्यक 63 हो,तो X का मान ज्ञात कीजिए:
29, 32, 48, 50, 𝑥,  𝑥 + 2, 72, 78, 84, 95


आँकड़ों 14, 25, 14, 28, 18, 17, 18, 14, 23, 22, 14, 18 का बहुलक ज्ञात कीजिए।


निम्न सारणी से एक फैक्टरी में काम कर रहे 60 कर्मचारियों का माध्य वेतन मान ज्ञात कीजिए।

वेतन (रुपये में) श्रमिकों की संख्या
3000 16
4000 12
5000 10
6000 8
7000 6
8000 4
9000 3
10000 1
कुल 60

यदि x, x + 3, x + 5, x + 7 प्रेक्षणों और x + 10 का माध्य 9 है, तो अंतिम तीन प्रेक्षणों का माध्य है 


एक सतत बारंबारता बंटन का बारंबारता बहुभुज खींचने के लिए, हम उन बिंदुओं को आलेखित करते हैं जिनकी कोटियाँ क्रमश : वर्गों की बारंबारताएँ होती हैं तथा भुज क्रमश : होते हैं


किसी कक्षा के विद्यार्थियों की एक मेडिकल परीक्षा में निम्नलिखित रक्त समूह रिकार्ड किए गए :  

रक्त समूह A AB B O
विद्यार्थियों का समूह 10 13 12 5

इस कक्षा में से एक विद्यार्थी यादृच्छिक रूप से चुना जाता है। इस विद्यार्थी का रक्त समूह B होने की प्रायिकता है :


50 प्रेक्षणों का माध्य 80.4 प्राप्त हुआ। परंतु बाद में यह ज्ञात हुआ कि एक स्थान पर 96 को 69 पढ़ लिया गया है। सही माध्य ज्ञात कीजिए।


दस प्रेक्षणों 6, 14, 15, 17, x + 1, 2x – 13, 30, 32, 34 और 43 को आरोही क्रम में लिखा गया है। इन आँकड़ों का माध्यक 24 है। x का मान ज्ञात कीजिए।


एक अस्पताल में,  ब्लड शुगर के स्तर (mg/dl) की जाँच के लिए 25 रोगी भर्ती किए गए तथा प्राप्त परिणाम निम्नलिखित रहे : 

87 71 83 67 85
77 69 76 65 85
85 54 70 68 80
73 78 68 85 73
81 78 81 77 75

उपरोक्त आँकड़ों का माध्य, माध्यक और बहुलक (mg/dl) ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×