Advertisements
Advertisements
Question
योग ज्ञात कीजिए :
1 + (–2) + (–5) + (–8) + ... + (–236)
Solution
यहाँ, पहला पद (a) = 1
तथा सार्व अंतर (d) = (–2) – 1 = –3
∵ AP के n पदों का योग,
Sn = `n/2[2a + (n - 1)d]`
⇒ Sn = `n/2[2 xx 1 + (n - 1) xx (-3)]`
⇒ Sn = `n/2 (2 - 3n + 3)`
⇒ Sn = `n/2 (5 - 3n)` ...(i)
हम जानते हैं कि, यदि किसी AP का अंतिम पद (l) ज्ञात है, तब
l = a + (n – 1)d
⇒ –236 = 1 + (n – 1)(–3) ...[∵ l = –236, दिया है]
⇒ –237 = – (n – 1) × 3
⇒ n – 1 = 79
⇒ n = 80
अब n का मान समीकरण (i) में रखने पर हम पाते हैं
Sn = `80/2[5 - 3 xx 80]`
= 40(5 – 240)
= 40 × (–235)
= –9400
अतः, आवश्यक योग –9400 है।
APPEARS IN
RELATED QUESTIONS
नीचे दिए गए योगफल को ज्ञात कीजिए:
34 + 32 + 30 + ... + 10
एक A.P. में, d = 5 और S9 = 75 दिया है। a और a9 ज्ञात कीजिए।
0 और 50 के बीच की विषम संख्याओं का योग ज्ञात कीजिए।
किसी AP में, यदि a = 1, an = 20 और Sn = 399 हों, तो n बराबर ______ है।
ज्ञात कीजिए कि 55 एक AP : 7, 10, 13,... का पद है या नहीं। यदि हाँ, तो ज्ञात कीजिए कि यह कौन-सा पद है।
किसी AP का प्रथम पद −5 और अंतिम पद 45 है। यदि इस AP के पदों का योग 120 हो, तो पदों की संख्या और सार्व अंतर ज्ञात कीजिए।
योग ज्ञात कीजिए :
`4 - 1/"n" + 4 - 2/"n" + 4 - 3/"n" + ... + "n पदों तक"`
ऐसी प्रथम सात संख्याओं का योग ज्ञात कीजिए, जो 2 का गुणज हैं और 9 का भी गुणज हैं।
[संकेत : 2 और 9 का LCM ज्ञात कीजिए।]
100 और 200 के बीच के उन पूर्णांकों का योग ज्ञात कीजिए, जो 9 से विभाज्य नहीं हैं।
[संकेत (ii) : ये संख्याएँ होंगी : कुल संख्याएँ– 9 से विभाज्य संख्याएँ]
समीकरण – 4 + (−1) + 2 + ... + x = 437 को हल कीजिए।