Advertisements
Advertisements
प्रश्न
योग ज्ञात कीजिए :
1 + (–2) + (–5) + (–8) + ... + (–236)
उत्तर
यहाँ, पहला पद (a) = 1
तथा सार्व अंतर (d) = (–2) – 1 = –3
∵ AP के n पदों का योग,
Sn = `n/2[2a + (n - 1)d]`
⇒ Sn = `n/2[2 xx 1 + (n - 1) xx (-3)]`
⇒ Sn = `n/2 (2 - 3n + 3)`
⇒ Sn = `n/2 (5 - 3n)` ...(i)
हम जानते हैं कि, यदि किसी AP का अंतिम पद (l) ज्ञात है, तब
l = a + (n – 1)d
⇒ –236 = 1 + (n – 1)(–3) ...[∵ l = –236, दिया है]
⇒ –237 = – (n – 1) × 3
⇒ n – 1 = 79
⇒ n = 80
अब n का मान समीकरण (i) में रखने पर हम पाते हैं
Sn = `80/2[5 - 3 xx 80]`
= 40(5 – 240)
= 40 × (–235)
= –9400
अतः, आवश्यक योग –9400 है।
APPEARS IN
संबंधित प्रश्न
0 और 50 के बीच की विषम संख्याओं का योग ज्ञात कीजिए।
एक स्कूल के विद्यार्थियों ने वायु प्रदूषण कम करने के लिए स्कूल के अंदर और बाहर पेड़ लगाने के बारे में सोचा। यह निर्णय लिया गया कि प्रत्येक कक्षा का प्रत्येक अनुभाग अपनी कक्षा की संख्या के बराबर पेड़ लगाएगा। उदाहरणार्थ, कक्षा I का एक अनुभाग 1 पेड़ लगाएगा, कक्षा II का एक अनुभाग 2 पेड़ लगाएगा, कक्षा III का एक अनुभाग 3 पेड़ लगाएगा, इत्यादि और ऐसा कक्षा XII तक के लिए चलता रहेगा। प्रत्येक कक्षा के तीन अनुभाग हैं। इस स्कूल के विद्यार्थियों द्वारा लगाए गए कुल पेड़ों की संख्या कितनी होगी?
प्रथम 100 प्राकृत संख्याओं के योग को ज्ञात करने से संबद्ध प्रसिद्ध गणितज्ञ ______ है।
योग ज्ञात कीजिए :
`4 - 1/"n" + 4 - 2/"n" + 4 - 3/"n" + ... + "n पदों तक"`
यदि Sn किसी AP के प्रथम n पदों का योग व्यक्त करता है, तो सिद्ध कीजिए कि S12 = 3(S8 – S4) है।
उस AP के प्रथम 17 पदों का योग ज्ञात कीजिए, जिसके चौथे और 9 वें पद क्रमशः –15 और –30 हैं।
प्रथम पद 8 और सार्व अंतर 20 वाली एक AP के प्रथम n पदों का योग एक अन्य AP के प्रथम 2n पदों के योग के बराबर है, जिसका प्रथम पद –30 और सार्व अंतर 8 है। n ज्ञात कीजिए।
किसी AP के प्रथम पाँच पदों के योग और उसी AP के प्रथम सात पदों के योग का योग 167 है। यदि इस AP के प्रथम दस पदों का योग 235 है, तो इसके प्रथम 20 पदों का योग ज्ञात कीजिए।
ज्ञात कीजिए :
1 से 500 तक के उन पूर्णांकों का योग जो 2 या 5 के गुणज हैं।
[संकेत (iii) : ये संख्याएँ होंगी : 2 के गुणज + 5 के गुणज – 2 और 5 दोनों के गुणज]
जसपाल सिंह अपने कुल 118000 रु के ऋण को मासिक किस्तों में, 1000 रु की पहली किस्त से प्रारंभ करते हुए, चुकाता है। यदि वह प्रति मास की किश्त 100 रु बढ़ाता जाता है, तो उसके द्वारा 30 वीं किस्त में कितनी राशि चुकाई जाएगी? 30 वीं किस्त के बाद उसको कितना ऋण चुकाना और शेष रहेगा?