मराठी

प्रथम पद 8 और सार्व अंतर 20 वाली एक AP के प्रथम n पदों का योग एक अन्य AP के प्रथम 2n पदों के योग के बराबर है, जिसका प्रथम पद –30 और सार्व अंतर 8 है। n ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

प्रथम पद 8 और सार्व अंतर 20 वाली एक AP के प्रथम n पदों का योग एक अन्य AP के प्रथम 2n पदों के योग के बराबर है, जिसका प्रथम पद –30 और सार्व अंतर 8 है। n ज्ञात कीजिए।

बेरीज

उत्तर

दिया गया है, पहले AP(a) का पहला पद = 8

और पहले AP(d) का सार्व अंतर = 20

माना पहले AP में पदों की संख्या n है।

∵ AP के प्रथम n पदों का योग,

Sn = `n/2 [2a + (n - 1)d]`

∴ Sn = `n/2[2 xx 8 + (n - 1)20]`

⇒ Sn = `n/2(16 + 20n - 20)`

⇒ Sn = `n/2(20n - 4)`

∴ Sn = n(10n – 2)   ...(i)

अब, दूसरे AP(a') का पहला पद = – 30

और दूसरे AP(d') का सार्व अंतर = 8

∴ दूसरे AP के पहले 2n पदों का योग,

S2n = `(2n)/2 [2a + (2n - 1)d]`

⇒ S2n = n[2(– 30) + (2n – 1)(8)]

⇒ S2n = n[– 60 + 16n – 8)]

⇒ S2n = n[16n – 68]     ...(ii)

अब, दी गई शर्त से,

पहले AP के पहले n पदों का योग = दूसरे AP के प्रथम 2n पदों का योग

⇒ Sn = S2n    ...[समीकरण (i) और (ii) से]

⇒ n(10n – 2) = n(16n – 68)

⇒ n[(16n – 68) – (10n – 2)] = 0

⇒ n(16n – 68 – 10n + 2) = 0

⇒ n(6n – 66) = 0

⇒ n = 11    ...[∵ n ≠ 0]

अतः, n का अभीष्ट मान 11 है।

shaalaa.com
A.P. के प्रथम N पदों का योग
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: समांतर श्रेढ़ी - प्रश्नावली 5.3 [पृष्ठ ५६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 5 समांतर श्रेढ़ी
प्रश्नावली 5.3 | Q 33. | पृष्ठ ५६

संबंधित प्रश्‍न

एक A.P. में, a = 2, d = 8 और Sn = 90 दिया है। n और an ज्ञात कीजिए।


किसी स्कूल के विद्यार्थियों के उनके समग्र शैक्षिक प्रदर्शन के लिए 7 नकद पुरस्कार देने के लिए ₹ 700 की राशि रखी गयी है। यदि प्रत्येक पुरस्कार अपने से ठीक पहले पुरस्कार से ₹ 20 कम है, तो प्रत्येक पुरस्कार का मान ज्ञात कीजिए।


किसी AP में, यदि a = 1, an = 20 और Sn = 399 हों, तो n बराबर ______ है।


योग ज्ञात कीजिए :

`(a - b)/(a + b) + (3a - 2b)/(a + b) + (5a - 3b)/(a + b) + ...` 11 पदों तक


AP: –2, –7, –12,... का कौन-सा पद –77 है? पद –77 तक इस AP का योग ज्ञात कीजिए।


उस AP के प्रथम 17 पदों का योग ज्ञात कीजिए, जिसके चौथे और 9 वें पद क्रमशः –15 और –30 हैं।


उस AP के सभी 11 पदों का योग ज्ञात कीजिए, जिसका मध्य पद 30 है।


AP: 8, 10, 12,..., 126 के अंतिम 10 पदों का योग ज्ञात कीजिए।


किसी AP के प्रथम पाँच पदों के योग और उसी AP के प्रथम सात पदों के योग का योग 167 है। यदि इस AP के प्रथम दस पदों का योग 235 है, तो इसके प्रथम 20 पदों का योग ज्ञात कीजिए।


100 और 200 के बीच के उन पूर्णांकों का योग ज्ञात कीजिए, जो 9 से विभाज्य नहीं हैं।

[संकेत (ii) : ये संख्याएँ होंगी : कुल संख्याएँ– 9 से विभाज्य संख्याएँ]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×