Advertisements
Advertisements
प्रश्न
प्रथम पद 8 और सार्व अंतर 20 वाली एक AP के प्रथम n पदों का योग एक अन्य AP के प्रथम 2n पदों के योग के बराबर है, जिसका प्रथम पद –30 और सार्व अंतर 8 है। n ज्ञात कीजिए।
उत्तर
दिया गया है, पहले AP(a) का पहला पद = 8
और पहले AP(d) का सार्व अंतर = 20
माना पहले AP में पदों की संख्या n है।
∵ AP के प्रथम n पदों का योग,
Sn = `n/2 [2a + (n - 1)d]`
∴ Sn = `n/2[2 xx 8 + (n - 1)20]`
⇒ Sn = `n/2(16 + 20n - 20)`
⇒ Sn = `n/2(20n - 4)`
∴ Sn = n(10n – 2) ...(i)
अब, दूसरे AP(a') का पहला पद = – 30
और दूसरे AP(d') का सार्व अंतर = 8
∴ दूसरे AP के पहले 2n पदों का योग,
S2n = `(2n)/2 [2a + (2n - 1)d]`
⇒ S2n = n[2(– 30) + (2n – 1)(8)]
⇒ S2n = n[– 60 + 16n – 8)]
⇒ S2n = n[16n – 68] ...(ii)
अब, दी गई शर्त से,
पहले AP के पहले n पदों का योग = दूसरे AP के प्रथम 2n पदों का योग
⇒ Sn = S2n ...[समीकरण (i) और (ii) से]
⇒ n(10n – 2) = n(16n – 68)
⇒ n[(16n – 68) – (10n – 2)] = 0
⇒ n(16n – 68 – 10n + 2) = 0
⇒ n(6n – 66) = 0
⇒ n = 11 ...[∵ n ≠ 0]
अतः, n का अभीष्ट मान 11 है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
`1/15,1/12,1/10`, ...., 11 पदों तक
एक A.P. में, d = 5 और S9 = 75 दिया है। a और a9 ज्ञात कीजिए।
8 के प्रथम 15 गुणजों का योग ज्ञात कीजिए।
एक स्कूल के विद्यार्थियों ने वायु प्रदूषण कम करने के लिए स्कूल के अंदर और बाहर पेड़ लगाने के बारे में सोचा। यह निर्णय लिया गया कि प्रत्येक कक्षा का प्रत्येक अनुभाग अपनी कक्षा की संख्या के बराबर पेड़ लगाएगा। उदाहरणार्थ, कक्षा I का एक अनुभाग 1 पेड़ लगाएगा, कक्षा II का एक अनुभाग 2 पेड़ लगाएगा, कक्षा III का एक अनुभाग 3 पेड़ लगाएगा, इत्यादि और ऐसा कक्षा XII तक के लिए चलता रहेगा। प्रत्येक कक्षा के तीन अनुभाग हैं। इस स्कूल के विद्यार्थियों द्वारा लगाए गए कुल पेड़ों की संख्या कितनी होगी?
यदि किसी AP का प्रथम पद –5 और सार्व अंतर 2 है, तो उसके प्रथम 6 पदों का योग ______ है।
3 के प्रथम पाँच गुणजों का योग ______ है।
योग ज्ञात कीजिए :
1 + (–2) + (–5) + (–8) + ... + (–236)
कनिका को उसका जेब खर्च 1 जनवरी 2008 को दिया गया। वह इसमें से अपने पिग्गी बैंक में पहले दिन 1 रु डालती है, दूसरे दिन 2 रु डालती है, तीसरे दिन 3 रु डालती है तथा ऐसा ही महीने के अंत तक करती रहती है। उसने अपने जेब खर्च में से 204 रु खर्च भी किए और पाया कि महीने के अंत में उसके पास अभी भी 100 रु शेष हैं। उस महीने उसको कितना जेब खर्च मिला था ?
किसी AP में 37 पद हैं। बीचो-बीच के तीन पदों का योग 225 है तथा अंतिम तीन पदों का योग 429 है। वह AP ज्ञात कीजिए।
जसपाल सिंह अपने कुल 118000 रु के ऋण को मासिक किस्तों में, 1000 रु की पहली किस्त से प्रारंभ करते हुए, चुकाता है। यदि वह प्रति मास की किश्त 100 रु बढ़ाता जाता है, तो उसके द्वारा 30 वीं किस्त में कितनी राशि चुकाई जाएगी? 30 वीं किस्त के बाद उसको कितना ऋण चुकाना और शेष रहेगा?