हिंदी

जसपाल सिंह अपने कुल 118000 रु के ऋण को मासिक किस्तों में, 1000 रु की पहली किस्त से प्रारंभ करते हुए, चुकाता है। यदि वह प्रति मास की किश्त 100 रु बढ़ाता जाता है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

जसपाल सिंह अपने कुल 118000 रु के ऋण को मासिक किस्तों में, 1000 रु की पहली किस्त से प्रारंभ करते हुए, चुकाता है। यदि वह प्रति मास की किश्त 100 रु बढ़ाता जाता है, तो उसके द्वारा 30 वीं किस्त में कितनी राशि चुकाई जाएगी? 30 वीं किस्त के बाद उसको कितना ऋण चुकाना और शेष रहेगा?

योग

उत्तर

दिया गया है,

जसपाल सिंह ने कुल ऋण लिया = रु. 118000

वह हर महीने भुगतान करके अपना पूरा कर्ज चुका देता है।

उसकी पहली किस्त = रु. 1000

दूसरी किस्त = 1000 + 100 = रु. 1100

तीसरी किस्त = 1100 + 100 = रु. 1200 और इसी तरह

मान लीजिए इसकी 30 वीं किस्त n है,

इस प्रकार, हमारे पास 1000, 1100, 1200,... हैं जो एक AP बनाते हैं, जिसका पहला पद (a) = 1000 है।

और सामान्य अंतर (d) = 1100 – 1000 = 100

AP का n वाँ पद, Tn = a + (n – 1)d

30 वीं किस्त के लिए,

T30 = 1000 + (30 – 1)100

= 1000 + 29 × 100

= 1000 + 2900

= 3900

तो, उसके द्वारा 30वीं किस्त में ₹ 3900 का भुगतान किया जाएगा।

उसने निम्नलिखित रूप में 30 किश्तों तक की कुल राशि का भुगतान किया

1000 + 1100 + 1200 + ... + 3900

प्रथम पद (a) = 1000 और अंतिम पद (l) = 3900

∴ 30 किश्तों का योग,

S30 = `30/2[a + l]`   ...[∵ किसी AP के प्रथम n पदों का योग है, `S_n = n/2[a + l]` जहाँ l = अंतिम पद]

⇒ S30 = 15(1000 + 3900)

= 15 × 4900

= रु. 73500

⇒ कुल राशि जो उसे 30 वीं किस्त के बाद भी चुकानी है।

= (ऋण की राशि) – (30 किस्तों का योग)

= 118000 – 73500

= रु. 44500

अत:, 30 वीं किस्त के बाद भी रु. 44500 का भुगतान किया जाना है। 

shaalaa.com
A.P. के प्रथम N पदों का योग
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: समांतर श्रेढ़ी - प्रश्नावली 5.4 [पृष्ठ ६०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 5 समांतर श्रेढ़ी
प्रश्नावली 5.4 | Q 9. | पृष्ठ ६०

संबंधित प्रश्न

निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:

`1/15,1/12,1/10`, ...., 11 पदों तक


एक A.P. में, a12 = 37 और d = 3 दिया है। a और S12 ज्ञात कीजिए।


8 के प्रथम 15 गुणजों का योग ज्ञात कीजिए।


किसी स्कूल के विद्यार्थियों के उनके समग्र शैक्षिक प्रदर्शन के लिए 7 नकद पुरस्कार देने के लिए ₹ 700 की राशि रखी गयी है। यदि प्रत्येक पुरस्कार अपने से ठीक पहले पुरस्कार से ₹ 20 कम है, तो प्रत्येक पुरस्कार का मान ज्ञात कीजिए।


एक स्कूल के विद्यार्थियों ने वायु प्रदूषण कम करने के लिए स्कूल के अंदर और बाहर पेड़ लगाने के बारे में सोचा। यह निर्णय लिया गया कि प्रत्येक कक्षा का प्रत्येक अनुभाग अपनी कक्षा की संख्या के बराबर पेड़ लगाएगा। उदाहरणार्थ, कक्षा I का एक अनुभाग 1 पेड़ लगाएगा, कक्षा II का एक अनुभाग 2 पेड़ लगाएगा, कक्षा III का एक अनुभाग 3 पेड़ लगाएगा, इत्यादि और ऐसा कक्षा XII तक के लिए चलता रहेगा। प्रत्येक कक्षा के तीन अनुभाग हैं। इस स्कूल के विद्यार्थियों द्वारा लगाए गए कुल पेड़ों की संख्या कितनी होगी?


AP: `- 4/3, -1, -2/3,..., 4 1/3` के दोनों मध्य पदों का योग ज्ञात कीजिए।


AP: –2, –7, –12,... का कौन-सा पद –77 है? पद –77 तक इस AP का योग ज्ञात कीजिए।


AP: −15, −13, −11,... का योग −55 बनाने के लिए इसके कितने पदों की आवश्यकता होगी? दो उत्तर प्राप्त होने का कारण स्पष्ट कीजिए।


प्रथम पद 8 और सार्व अंतर 20 वाली एक AP के प्रथम n पदों का योग एक अन्य AP के प्रथम 2n पदों के योग के बराबर है, जिसका प्रथम पद –30 और सार्व अंतर 8 है। n ज्ञात कीजिए।


100 और 200 के बीच के उन पूर्णांकों का योग ज्ञात कीजिए, जो 9 से विभाज्य नहीं हैं।

[संकेत (ii) : ये संख्याएँ होंगी : कुल संख्याएँ– 9 से विभाज्य संख्याएँ]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×