Advertisements
Advertisements
प्रश्न
किसी स्कूल के विद्यार्थियों के उनके समग्र शैक्षिक प्रदर्शन के लिए 7 नकद पुरस्कार देने के लिए ₹ 700 की राशि रखी गयी है। यदि प्रत्येक पुरस्कार अपने से ठीक पहले पुरस्कार से ₹ 20 कम है, तो प्रत्येक पुरस्कार का मान ज्ञात कीजिए।
उत्तर १
मान लीजिए कि प्रथम पुरस्कार की कीमत P है।
द्वितीय पुरस्कार की कीमत = P − 20
तथा तृतीय पुरस्कार की कीमत = P − 40
यह देखा जा सकता है कि इन पुरस्कारों की कीमत एक समान्तर श्रेणी में है, जिसका सार्व अंतर −20 है तथा प्रथम पद P है।
a = P
d = −20
यह देखते हुए कि, S7 = 700
`7/2[2a+(7-1)d] = 700`
`([2a+(6)(-20)])/2 = 100`
a + 3(−20) = 100
a − 60 = 100
a = 160
इसलिए, प्रत्येक पुरस्कार का मूल्य 160 रुपये, 100 रुपये था। 140 रुपये, 120 रुपये, 100 रुपये, 80 रुपये, 60 रुपये और 40 रुपये।
उत्तर २
मान लीजिए प्रथम पुरस्कार ₹ a है तथा d = -₹ 20, n = 7 एवं S7 = ₹ 700 (दिए हैं)
∵ `S_n = n/2 [ 2a + (n-1) d]`
`700 = 7/2 [ 2(a) + (7 - 1) (-20)]`
`700 = 7/2 [ 2a +(6) (-20)]`
`700 = 7/2 (2a - 120)`
700 = 7 (a -60)
`700/7 = a - 60`
100 + 60 = a
a = 160
दूसरा पुरस्कार = 140 रुपये
तीसरा पुरस्कार = 120 रुपये
चौथा पुरस्कार = 100 रुपये
पाँचवाँ पुरस्कार = 80 रुपये
छठा पुरस्कार = 60 रुपये
सातवाँ पुरस्कार= 40 रुपये
a2 = 160 - 20 = 140, a3 = 140 - 20 = 120, a4 = 120 - 20 = 100, a5 = 100 - 20 = 80, a6 = 80 - 20 = 60 एवं a7 = 60 - 20 = 40
अत: अभीष्ट पुरस्कार क्रमशः ₹ 160, ₹ 140, ₹ 120, ₹ 100, ₹ 80, ₹ 60 एवं ₹ 40 है।
APPEARS IN
संबंधित प्रश्न
नीचे दिए गए योगफल को ज्ञात कीजिए:
`7 + 10 1/2 + 14 + ... + 84`
नीचे दिए गए योगफल को ज्ञात कीजिए:
34 + 32 + 30 + ... + 10
एक A.P. में, a = 5, d = 3 और an = 50 दिया है। n और Sn ज्ञात कीजिए।
एक A.P. में, l = 28, S = 144 और कुल 9 पद हैं। a ज्ञात कीजिए।
ऐसे प्रथम 40 धन पूर्णांकों का योग ज्ञात कीजिए जो 6 से विभाज्य हैं।
0 और 50 के बीच की विषम संख्याओं का योग ज्ञात कीजिए।
AP: `- 4/3, -1, -2/3,..., 4 1/3` के दोनों मध्य पदों का योग ज्ञात कीजिए।
योग ज्ञात कीजिए :
`4 - 1/"n" + 4 - 2/"n" + 4 - 3/"n" + ... + "n पदों तक"`
यदि Sn किसी AP के प्रथम n पदों का योग व्यक्त करता है, तो सिद्ध कीजिए कि S12 = 3(S8 – S4) है।
AP: −15, −13, −11,... का योग −55 बनाने के लिए इसके कितने पदों की आवश्यकता होगी? दो उत्तर प्राप्त होने का कारण स्पष्ट कीजिए।