हिंदी

किसी स्कूल के विद्यार्थियों के उनके समग्र शैक्षिक प्रदर्शन के लिए 7 नकद पुरस्कार देने के लिए ₹ 700 की राशि रखी गयी है। यदि प्रत्येक पुरस्कार अपने से ठीक पहले पुरस्कार से ₹ 20 कम है, तो प्रत्येक - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

किसी स्कूल के विद्यार्थियों के उनके समग्र शैक्षिक प्रदर्शन के लिए 7 नकद पुरस्कार देने के लिए ₹ 700 की राशि रखी गयी है। यदि प्रत्येक पुरस्कार अपने से ठीक पहले पुरस्कार से ₹ 20 कम है, तो प्रत्येक पुरस्कार का मान ज्ञात कीजिए।

योग

उत्तर १

मान लीजिए कि प्रथम पुरस्कार की कीमत P है।

द्वितीय पुरस्कार की कीमत = P − 20

तथा तृतीय पुरस्कार की कीमत = P − 40

यह देखा जा सकता है कि इन पुरस्कारों की कीमत एक समान्तर श्रेणी में है, जिसका सार्व अंतर −20 है तथा प्रथम पद P है।

a = P

d = −20

यह देखते हुए कि, S7 = 700

`7/2[2a+(7-1)d] = 700`

`([2a+(6)(-20)])/2 = 100`

a + 3(−20) = 100

a − 60 = 100

a = 160

इसलिए, प्रत्येक पुरस्कार का मूल्य 160 रुपये, 100 रुपये था। 140 रुपये, 120 रुपये, 100 रुपये, 80 रुपये, 60 रुपये और 40 रुपये।

shaalaa.com

उत्तर २

मान लीजिए प्रथम पुरस्कार ₹ a है तथा d = -₹ 20, n = 7 एवं S7 = ₹ 700 (दिए हैं)

∵  `S_n = n/2 [ 2a + (n-1) d]`

`700 = 7/2 [ 2(a) + (7 - 1) (-20)]`

`700 = 7/2 [ 2a +(6) (-20)]`

`700 = 7/2 (2a - 120)`

700 = 7 (a -60)

`700/7 =  a - 60`

100 + 60  = a

a = 160

दूसरा पुरस्कार = 140 रुपये

तीसरा पुरस्कार = 120 रुपये

चौथा पुरस्कार = 100 रुपये

पाँचवाँ पुरस्कार = 80 रुपये

छठा पुरस्कार = 60 रुपये

सातवाँ पुरस्कार= 40 रुपये

a2 = 160 - 20 = 140, a3 = 140 - 20 = 120, a4 = 120 - 20 = 100, a5 = 100 - 20 = 80, a6 = 80 - 20 = 60 एवं a7 = 60 - 20 = 40

अत: अभीष्ट पुरस्कार क्रमशः ₹ 160, ₹ 140, ₹ 120, ₹ 100, ₹ 80, ₹ 60 एवं ₹ 40 है।

shaalaa.com
A.P. के प्रथम N पदों का योग
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: समांतर श्रेढ़ीयाँ - प्रश्नावली 5.3 [पृष्ठ १२५]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
अध्याय 5 समांतर श्रेढ़ीयाँ
प्रश्नावली 5.3 | Q 16. | पृष्ठ १२५

संबंधित प्रश्न

नीचे दिए गए योगफल को ज्ञात कीजिए:

`7 + 10 1/2 + 14 + ... + 84`


नीचे दिए गए योगफल को ज्ञात कीजिए:

34 + 32 + 30 + ... + 10


एक A.P. में, a = 5, d = 3 और an = 50 दिया है। n और Sn ज्ञात कीजिए।


एक A.P. में, l = 28, S = 144 और कुल 9 पद हैं। a ज्ञात कीजिए।


ऐसे प्रथम 40 धन पूर्णांकों का योग ज्ञात कीजिए जो 6 से विभाज्य हैं।


0 और 50 के बीच की विषम संख्याओं का योग ज्ञात कीजिए।


AP: `- 4/3, -1, -2/3,..., 4 1/3` के दोनों मध्य पदों का योग ज्ञात कीजिए।


योग ज्ञात कीजिए :

`4 - 1/"n" + 4 - 2/"n" + 4 - 3/"n" + ... + "n पदों तक"`


यदि Sn किसी AP के प्रथम n पदों का योग व्यक्त करता है, तो सिद्ध कीजिए कि S12 = 3(S8 – S4) है। 


AP: −15, −13, −11,... का योग −55 बनाने के लिए इसके कितने पदों की आवश्यकता होगी? दो उत्तर प्राप्त होने का कारण स्पष्ट कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×