Advertisements
Advertisements
Question
किसी स्कूल के विद्यार्थियों के उनके समग्र शैक्षिक प्रदर्शन के लिए 7 नकद पुरस्कार देने के लिए ₹ 700 की राशि रखी गयी है। यदि प्रत्येक पुरस्कार अपने से ठीक पहले पुरस्कार से ₹ 20 कम है, तो प्रत्येक पुरस्कार का मान ज्ञात कीजिए।
Solution 1
मान लीजिए कि प्रथम पुरस्कार की कीमत P है।
द्वितीय पुरस्कार की कीमत = P − 20
तथा तृतीय पुरस्कार की कीमत = P − 40
यह देखा जा सकता है कि इन पुरस्कारों की कीमत एक समान्तर श्रेणी में है, जिसका सार्व अंतर −20 है तथा प्रथम पद P है।
a = P
d = −20
यह देखते हुए कि, S7 = 700
`7/2[2a+(7-1)d] = 700`
`([2a+(6)(-20)])/2 = 100`
a + 3(−20) = 100
a − 60 = 100
a = 160
इसलिए, प्रत्येक पुरस्कार का मूल्य 160 रुपये, 100 रुपये था। 140 रुपये, 120 रुपये, 100 रुपये, 80 रुपये, 60 रुपये और 40 रुपये।
Solution 2
मान लीजिए प्रथम पुरस्कार ₹ a है तथा d = -₹ 20, n = 7 एवं S7 = ₹ 700 (दिए हैं)
∵ `S_n = n/2 [ 2a + (n-1) d]`
`700 = 7/2 [ 2(a) + (7 - 1) (-20)]`
`700 = 7/2 [ 2a +(6) (-20)]`
`700 = 7/2 (2a - 120)`
700 = 7 (a -60)
`700/7 = a - 60`
100 + 60 = a
a = 160
दूसरा पुरस्कार = 140 रुपये
तीसरा पुरस्कार = 120 रुपये
चौथा पुरस्कार = 100 रुपये
पाँचवाँ पुरस्कार = 80 रुपये
छठा पुरस्कार = 60 रुपये
सातवाँ पुरस्कार= 40 रुपये
a2 = 160 - 20 = 140, a3 = 140 - 20 = 120, a4 = 120 - 20 = 100, a5 = 100 - 20 = 80, a6 = 80 - 20 = 60 एवं a7 = 60 - 20 = 40
अत: अभीष्ट पुरस्कार क्रमशः ₹ 160, ₹ 140, ₹ 120, ₹ 100, ₹ 80, ₹ 60 एवं ₹ 40 है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
0.6, 1.7, 2.8, ....,100 पदों तक
एक A.P. में, a = 5, d = 3 और an = 50 दिया है। n और Sn ज्ञात कीजिए।
एक A.P. में, a12 = 37 और d = 3 दिया है। a और S12 ज्ञात कीजिए।
यदि किसी AP का प्रथम पद –5 और सार्व अंतर 2 है, तो उसके प्रथम 6 पदों का योग ______ है।
3 के प्रथम पाँच गुणजों का योग ______ है।
AP: `- 4/3, -1, -2/3,..., 4 1/3` के दोनों मध्य पदों का योग ज्ञात कीजिए।
यदि an = 3 – 4n हो, तो दर्शाइए कि a1, a2, a3,... एक AP बनाते हैं। S20 भी ज्ञात कीजिए।
ज्ञात कीजिए :
1 से 500 तक के उन पूर्णांकों का योग जो 2 के भी गुणज हैं और 5 के भी गुणज हैं।
ज्ञात कीजिए :
1 से 500 तक के उन पूर्णांकों का योग जो 2 या 5 के गुणज हैं।
[संकेत (iii) : ये संख्याएँ होंगी : 2 के गुणज + 5 के गुणज – 2 और 5 दोनों के गुणज]
जसपाल सिंह अपने कुल 118000 रु के ऋण को मासिक किस्तों में, 1000 रु की पहली किस्त से प्रारंभ करते हुए, चुकाता है। यदि वह प्रति मास की किश्त 100 रु बढ़ाता जाता है, तो उसके द्वारा 30 वीं किस्त में कितनी राशि चुकाई जाएगी? 30 वीं किस्त के बाद उसको कितना ऋण चुकाना और शेष रहेगा?