Advertisements
Advertisements
Question
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
0.6, 1.7, 2.8, ....,100 पदों तक
Solution
0.6, 1.7, 2.8, ....,100 पदों तक
इस A.P. के लिए,
a = 0.6
d = a2 − a1
= 1.7 − 0.6
d = 1.1
n = 100
हम जानते हैं कि
Sn = `n/2[2a+(n-1)d]`
S100 = `100/2[2(0.6)+(100 - 1)1.1]`
= 50[1.2 + (99) × (1.1)]
= 50[1.2 + 108.9]
= 50[110.1]
= 5505
इस प्रकार, पहले 100 पदों का अपेक्षित योग 5505 है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
`1/15,1/12,1/10`, ...., 11 पदों तक
एक A.P. में, d = 5 और S9 = 75 दिया है। a और a9 ज्ञात कीजिए।
किसी स्कूल के विद्यार्थियों के उनके समग्र शैक्षिक प्रदर्शन के लिए 7 नकद पुरस्कार देने के लिए ₹ 700 की राशि रखी गयी है। यदि प्रत्येक पुरस्कार अपने से ठीक पहले पुरस्कार से ₹ 20 कम है, तो प्रत्येक पुरस्कार का मान ज्ञात कीजिए।
यदि किसी AP का प्रथम पद –5 और सार्व अंतर 2 है, तो उसके प्रथम 6 पदों का योग ______ है।
किसी AP में यदि Sn = 3n2 + 5n और ak = 164 है, तो k का मान ज्ञात कीजिए।
उस AP के प्रथम 17 पदों का योग ज्ञात कीजिए, जिसके चौथे और 9 वें पद क्रमशः –15 और –30 हैं।
यासमीन पहले महीने में 32 रु की बचत करती है, दूसरे महीने में 36 रु की बचत करती है तथा तीसरे महीने में 40 रु की बचत करती है। यदि वह इसी प्रकार बचत करती रहे, तो कितने महीने में वह 2000 रु की बचत कर लेगी?
ज्ञात कीजिए :
1 और 500 के बीच के उन पूर्णांकों का योग जो 2 के भी गुणज हैं और 5 के भी गुणज हैं।
100 और 200 के बीच के उन पूर्णांकों का योग ज्ञात कीजिए, जो
- 9 से विभाज्य हैं।
- 9 से विभाज्य नहीं हैं।
[संकेत (ii) : ये संख्याएँ होंगी : कुल संख्याएँ – 9 से विभाज्य संख्याएँ]
समीकरण – 4 + (−1) + 2 + ... + x = 437 को हल कीजिए।