Advertisements
Advertisements
Question
किसी AP में यदि Sn = 3n2 + 5n और ak = 164 है, तो k का मान ज्ञात कीजिए।
Solution
∵ किसी AP का n वाँ पद,
an = Sn – Sn – 1
= 3n2 + 5n – 3(n – 1)2 – 5(n – 1) ...[∵ Sn = 3n2 + 5n (दिया गया है)]
= 3n2 + 5n – 3n2 – 3 + 6n – 5n + 5
⇒ an = 6n + 2 ...(i)
या ak = 6k + 2 = 164 ...[∵ ak = 164 (दिया गया है)]
⇒ 6k = 164 – 2 = 162
∴ k = 27
APPEARS IN
RELATED QUESTIONS
निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:
2, 7, 12, ......,10 पदों तक
एक A.P. में, a12 = 37 और d = 3 दिया है। a और S12 ज्ञात कीजिए।
ऐसे प्रथम 40 धन पूर्णांकों का योग ज्ञात कीजिए जो 6 से विभाज्य हैं।
यदि किसी AP का प्रथम पद –5 और सार्व अंतर 2 है, तो उसके प्रथम 6 पदों का योग ______ है।
AP: 10, 6, 2,... के प्रथम 16 पदों का योग ______ है।
ज्ञात कीजिए कि 55 एक AP : 7, 10, 13,... का पद है या नहीं। यदि हाँ, तो ज्ञात कीजिए कि यह कौन-सा पद है।
प्रथम पद 8 और सार्व अंतर 20 वाली एक AP के प्रथम n पदों का योग एक अन्य AP के प्रथम 2n पदों के योग के बराबर है, जिसका प्रथम पद –30 और सार्व अंतर 8 है। n ज्ञात कीजिए।
किसी AP के प्रथम पाँच पदों के योग और उसी AP के प्रथम सात पदों के योग का योग 167 है। यदि इस AP के प्रथम दस पदों का योग 235 है, तो इसके प्रथम 20 पदों का योग ज्ञात कीजिए।
ज्ञात कीजिए :
1 से 500 तक के उन पूर्णांकों का योग जो 2 या 5 के गुणज हैं।
[संकेत (iii) : ये संख्याएँ होंगी : 2 के गुणज + 5 के गुणज – 2 और 5 दोनों के गुणज]
जसपाल सिंह अपने कुल 118000 रु के ऋण को मासिक किस्तों में, 1000 रु की पहली किस्त से प्रारंभ करते हुए, चुकाता है। यदि वह प्रति मास की किश्त 100 रु बढ़ाता जाता है, तो उसके द्वारा 30 वीं किस्त में कितनी राशि चुकाई जाएगी? 30 वीं किस्त के बाद उसको कितना ऋण चुकाना और शेष रहेगा?